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ABSTRACT

Recent algorithmic developments have greatly accel-
erated 3-D simulation of micromachined devices, but
simulation and optimization of systems which use those
devices require much more easily evaluated, yet still ac-
curate, macromodels. In this paper we focus on gener-
ating dynamically accurate small-signal macromodels,
useful in many signal processing and feedback control
applications. Results are presented demonstrating that
dynamically accurate macromodels for the small-signal
behavior of a cantilever beam and a micromirror can be
automatically generated directly from 3-D simulation.
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1 INTRODUCTION

The micro-mirror (Figure 1) and a simple cantilever
beam are examples of coupled micro-electro-mechanical
(MEMS) systems. These systems are coupled in the
sense that the mechanical deformation is determined by
the electrostatic forces and the electrostatic forces in
turn depend on the deformation. It is possible to an-
alyze such structures using recently developed acceler-
ated methods ([1], [2]), but these methods are still too
slow to be used in system-level simulation and optimiza-
tion. Some form of macromodeling, or model-reduction,
is required.

There are many approaches to model order reduction
(i-e. [3], [4]), and herein we describe an approach based
on adapting the techniques in [3], [5]. These previous
approaches exploited the fact that system matrices were
explicitly available, and that is not the case when using
accelerated 3-D solvers. In addition, much more accu-
rate models can be developed by incorporating both the
linear and quadratic dependencies of the electrostatic
forces on the applied voltage.

The basic idea behind many model order reduction
techniques is to write down the algebraic relation be-
tween the input and output in the frequency domain
and then somehow approximate the transfer function
with a much lower order system. Most electromechan-
ical systems with no damping can be described by the

Figure 1: Micromirror geometry. Note the pair of thin
drive electrodes beneath the mirror.

O.D.E.

Mi+Ku=b
y=clu

Y(s)=cT(s*M + K)7'b U(s) @)
H(s)

where M is the mass matrix, K the stiffness matrix, b
the input force direction and v is the input.

The transfer function can be expanded as a power
series about s = 0, in which case the coefficients of the
power series are

(K IM)1K1, i=0...00.

A transformation matrix V can be defined as con-
taining the Krylov subspace

V<K% (K MK~ ... (KM K15 >(2)
and then a variable transformation can be defined as

=Vz, M=VTMV, K =VTKYV, 3)
=Vb, é=Ve

Using the variable transformation generates a re-
duced O.D.E.

[+ Kz=bv
y= aT P (4)
If V is defined as above, the power series expansion

of the reduced system transfer function is guaranteed to
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match the first 7 terms of the power series expansion of
the original system [3].
If the system has damping, then the O.D.E. becomes

Mi+Diu+ Ku=bv
y=clu

Y(s) = cT(sM + sD + K)™*b U(s) (5)

H(s)

where D is the damping matrix.
To generate a power series expansion for the transfer
function, consider converting the system to first order,

="y ook ]3]

~ PN ~

Mz+Kz=b
If, as before, we define V" as
Vo <K%, (K 'M)K% ... (KM Kb >

then we can obtain reduced matrices, though they are
not guaranteed to be stable. Instead [3] has shown if we
take only the top half,
NN e}
Vl, V = [ ‘72 ]
the resulting reduced model matches exactly 7 power
series terms The intuition is that if z = Vjz, then the
time derivative should be £ = V12 and not £ = V52.
Note also that the columns in V; span more than the
space spanned by V.

The reduced matrices are defined as

i= T, 3 = (V)TMV, K = (V)T

D= (F)TDV, b= Vb, &= Te @
and the reduced O.D.E. is
{4+ Dii+Kia=hb
Y= 5T,a (8)

Note that even though “K~1” appears twice in

A K-'D K-
-1 __
=[P

K~ needs to applied only once to compute “K~1x
a vector”. One can also alternatively expand around
s = co. In this case the reduced model will match (1)
near t = 0 as opposed to the s = 0 reduced model
described here which matches the steady state of (1).

2 COUPLED DOMAIN REDUCTION

The equations for a coupled domain system (without
damping) are

M & + F(z) = P(z,q) ©)
Alz)tg= ¢o+Adv

where z is the state space, F' the force due to internal
stresses, P the external surface force which depends on
the charge ¢, A is the potential coefficient matrix, ¢q is
the bias potential vector which can undergo a perturba-
tion v in the direction A¢. A¢ consists of ones corre-
spoding to surfaces on which ¢y is perturbed and zeroes
otherwise. Let us the assume that the original fully non-
linear model is completely elastic and that we would like
to generate a completely elastic reduced model. To ap-
ply the aforementioned model reduction technique, the
strategy here will be to linearize the above equations
about the bias point (zg, @o). Specifically,

(10)

. ,0F Q8P 0OPdq _ 0PYq
MU+S%—% %—%Zu = aqav'v+
K RHS;
10 [0Poq] »
20v | 8q dv v
RHS;

Observe that the right hand side is not strictly a
linearization. The quadratic term is explicitly included
as the electrostatic force is related to the square of the
applied voltage.

At the bias point @ the charge g is given as

90 = A(zo)do
Perturbing ¢y by v, the change in ¢ is given by

g = 68 A(i, )T A(i, ) o
Ag? = 20T A(i,:)TA(3, ) Adv + AgT A4, )T A(4, ) Apv?

Since the force depends linearly on g2, if the bias ¢y is 0,
a linearization will result in zero force and the quadratic
term must be included. As a result we can expect that if
the input is a sine wave of frequency w the response has
frequencies w and 2w. Note the computation is straight-
forward. A(i,:)o is simply go(i) and A(3,:)A¢ is ith co-
ordinate of the charge computed with A¢ as the voltage.
Therefore computing the right hand side force term just
involves an extra electrostatic black box call over the
equilibrium charge calculation. Also note that prior to
model order reduction we must have already explicitly
computed % (which is needed for solution of the outer

Newton loop) at the equilibrium point. For convenience

we now calculate “25”. Also while 2E — 22 is known
F-red 8z 9z

explicitly, gg is computed using finite differences as in
[1].

Calculating the Krylov subspace corresponding to
the above equation can be very slow as the inverse of the
K matrix has to be applied using an inner iterative pro-
cedure. This inner iteration converges slowly because
of the wide range of eigenvalues of the stiffness matrix.
Therefore since ( % — %i:- is already known explicitly
we factor it and use it as a preconditioner for finding
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K~1. As a consequence the number of iterations rarely
exceeds four. Although V is orthogonalized while cal-
culating the basis ( and this also avoids ill-conditioning
of the reduced matrices), in the damping case V; is not
orthonormal and is therefore orthogonalized.

Also note that with a nonsymmetric K, there is no
known way to diagonalize both M and K simultane-
ously. Since we have two right sides we can generate
two sets of matrices

(Mly b17}:€17 ‘617 E17“1)7 (M27-D2a Rza 52, é'2,’1112)

i.e. one for each right hand side and the actual solution
is v = ug + ug (by linearity).

3 RESULTS

Most MEMS devices are not packed in vaccum and
S0 we can expect to see air damping. But we will not in-
corporate air damping here. Instead we introduce a ficti-
tious positive definite air damping matrix D to test our
model reduction. First we reduce a “plain” linearized
(i.e. no quadratic term of voltage) cantilever beam to
a 15t order model and compare it with the full simu-
lation by taking it to steady state shown in Figure 3.
The steady state error is large. For a lightly damped
model we compare the transient responses of the fully
nonlinear model, the 15t* reduced models of the “plain”
linearized and linearized systems in Figure 4. The re-
duced model of the linearized system matches very well
with the full model.

In the micromirror in Figure 1, the device input is
a differential voltage applied to a pair of plates beneath
the mirror, and the output is the micromirror’s angular
deflection. As shown in Figure 2 the quasistatic simu-
lation results are in close agreement with experimental
data [6]. The nearly 7000 degrees of freedom mirror is
reduced into two 15%* order reduced models (one each
for the linear and quadratic right hand sides (10)) with-
out any damping and we see again that the fully elastic
reduced model simulation matches well with the simu-
lation of the fullmodel (rigid/elastic) [1].

However if the number of mechanical degrees of free-
dom is large as in the case of the micromirror the re-
duction process becomes expensive because of the cost
of finding a static solution first/cost of factoring. In
such cases it is possible to derive a reduced rigid/elastic
model directly from the full rigid/elastic model.

4 Conclusion

We have successfully demonstrated a fully automatic
technique to take a partly implicit system and reduce it
to a much smaller explicit system that accurately cap-
tures the small signal behaviour of the original system.

The authors acknowledge the support of the DARPA
composite CAD program and grants from the National
Science Foundation.
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Figure 2: Micromirror displacement versus voltage.
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Figure 3: Cantilever beam voltage step responses (heav-
ily damped case) using numerical simulation and a gen-
erated linear-only macromodel.
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Figure 4: Cantilever beam voltage transient responses
(lightly damped case) using numerical simulation and
two generated macromodels.
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Figure 5: Comparing micromirror differential voltage
step responses computing using numerical simulation
and 15th order macromodels.
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