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Abstract

In orderfor parasiticextractionof high-speedintegratedcircuit intercon-
nectto besufficiently efficient, andfit with model-orderreductiontech-
niques,a robustwidebandsurfaceintegral formulationis essential.One
recentlydevelopedsurfaceintegral formulationhasshown promise,but
wasplaguedwith numericaldifficultiesof poorly understoodorigin. In
thispaperweshow thatoneof thatformulation’s difficultieswasrelated
to the inaccuracy in the approachto evaluateintegralsover discretiza-
tion panels,andwe presentan accurateapproachbasedon an adapted
piecewisequadraturescheme.We alsoshow that theconditionnumber
of theoriginalsystemof integralequationscanbereducedby differenti-
atingoneof theintegral equations.Computationalresultson a ring and
a spiral inductorareusedto show that the new quadratureschemeand
thedifferentiatedintegral formulationimprove accuracy andaccelerate
theconvergenceof iterative solutionmethods.

1. Intr oduction

The layoutparasiticsin critical netsin high frequency analogandhigh
speeddigital integratedcircuits must be analyzedusing methodsthat
take into accountdistributedresistive, capacitive andinductive effects,
and may even requirea careful treatmentof radiation. The only ap-
proachesthathaveprovento becapableof detailedelectromagneticanal-
ysisof complicatedintegratedcircuit interconnectaretheacceleratedin-
tegralequationmethodslikethoseusedin FastCap[1] andFastHenry[2].
In addition,it is widely agreedthattheintegral formulationusedmustbe
asurfaceformulation,assuchformulationsavoidafrequency-dependent
discretizationof theinterior of conductorsandthesubstrate[3, 4].

Onerecentlydevelopedsurfaceintegralformulationhasshown promise[3],
but wasplaguedwith numericaldifficultiesof poorly understoodorigin.
In this paperwe show thatoneof that formulation’s difficultieswasre-
latedto inaccuracy in theapproachto evaluateintegralsover discretiza-
tion panels,andwe presentan accurateapproachbasedon an adapted
piecewisequadraturescheme.We alsoshow that theconditionnumber
of theoriginalsystemof integralequationscanbereducedby differenti-
atingoneof theintegral equations.Computationalresultson a ring and
a spiral inductorareusedto show that the new quadratureschemeand
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thedifferentiatedintegral formulationimprove accuracy andaccelerate
theconvergenceof iterative solutionmethods.

2. SurfaceFormulation

Thesurfaceintegral formualtionproposedin [3, 4] is asfollows
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whereSk is thesurfaceof thek-th conductor, S is theunionof theSk’s,

�r and �r � areon S, ρs denotesthesurfacechargedensity, E is theelectric
field, σ is theconductivity of theconductor, n̂ is theoutwardnormalunit
vectoron theconductorsurface,and
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whereω is theexcitation frequency, andε andµ arethedielectricper-
mittivity andmagneticpermeability, respectively. It shouldbenotedthat
thejump conditionof thedouble-layerintegral hasalreadybeenapplied
in (1) and(2). The formulationhaseightscalarstatevariables,Ex, Ey,



Figure1: Paneldiscretization

Ez, ∂Ex
∂n , ∂Ey

∂n , ∂Ez
∂n , φ andρs. Sincethe equation(2) along the normal

direction is not enforced,the total numberof scalarequationsis also
eight.

3. Panel Integration

In orderto discretizethesystemof integralequations(1–5),apiecewise-
constantcentroidcollocationschemeis used.Theconductorsurfaceis
discretizedinto N flat quadrilateralpanels. Seven unknowns areasso-
ciatedwith eachpanel: Ex, Ey, Ez, ∂Ex

∂n , ∂Ey
∂n , ∂Ez

∂n andρs. The scalar
potentialφ is associatedwith thepanelvertices.For moredetailsabout
thediscretization,pleasereferto [3].

3.1 Definition
After discretization,the integralsover conductorsurfaceSor Sk arere-
placedby thesummationof integralsover panels.Theseintegralsare
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wherePi is thei-th panel,n̂ � Pi 
 is theunit normalvectorontheflat panel
Pi, andG � �r � �r � 
 is eitherG0 � �r � �r � 
 or G1 � �r � �r � 
 definedin (6) and(7). From
thesymmetrypropertyof theGreen’s function,it follows that�
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Therefore,to computethe integralsin equation(8) (9) and(10), all we

needis to computeI1 � �r 
 and ∂I1 ���r �
∂D , whereD standsfor x, y or z.

3.2 Decomposition
It is shown in [5] that any integration over a polygon is equalto the
signedsummationof the integrationover a chosensetof triangles.The
verticesof thesetrianglesare thoseof the polygonand the projection
of theevaluationpoint onto theplanewherethepolygonlies, asshown
in figure 2. To be more precise,let f � �r 
 be a generalintegrand, its

Figure 2: Decompositionof an integration over a polygon into sev-
eral integrations over traingels

integrationover a polygonin figure 2 couldbewritten as�
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whereN is thenumberof vertices,VN " 1
� V1, andsi

� � 1 if ViVi " 1 is
clockwiselooking from the evaluationpoint E andsi

� 1 if otherwise.

This ideawasusedin [4] to computetheintegralsI1 � �r 
 and ∂I1 � �r �
∂D .

3.3 Desingularization and Reduction to 1-D inte-
gration

In apolarcoordinatesystem,atriangleafterthedecompositionis shown
in figure 3. UsingtherelationR � � r2 � h2 andRdR � rdr, theintegrals
I1 and ∂I1

∂D over this trianglecouldberewritten in polarcoordinatesas
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Now thesingularityof theoriginal kernelsin I1 and ∂I1
∂D hasbeenelim-

inatedandthe 2-D integrationshave beenreducedto 1-D integrations.
Thequadraturerule is usedto computethetwo 1-D integrationsin equa-
tion (13) and(15). Thesharedrapidchangingkernelin thesetwo inte-
gralsis f � θ 
 � eikR1 � θ � , whereR1 � θ 
 �%$ d2sec2 � θ 
&� h2. Whend '('
AB, θA ) � π

2 andθB ) π
2 , and f � θ 
 changesrapidly over the interval.

Many quadraturepointsmustbeusedto achieve reasonableaccuracy.

3.4 Piece-wiseQuadrature Scheme
A simple variabletransformationanda piece-wisequadraturescheme
canbeusedto solve theabove-mentionedproblem.Let x � dtan� θ 
 , it
easilyfollows that dθ

dx
� d

r2 , wherer2 � d2 � x2. The rapidly changing

partof I1 and ∂I1
∂D couldberewritten as� θB
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dθeikR � � xB

xA

dxg� x
*� where g � x
 � d

r2 eik + h2 " r2
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The distribution of the integrandg � x
 is shown in the top figure of the
figure4. Many quadraturepointsmuststill beusedto getaccurateeval-
uationbecauseof therapidvariationaboutx � 0. However if we divide



Figure 3: Triangle in polar coordinate system,d is the distancebe-
tweenpoint P and edgeAB

the integration domaininto two sub-domains,asshown in the middle
andthebottomfigure of thefigure 4, andusea piece-wiseintegration
scheme,the numberof quadraturepoints neededwill be dramatically
reduced. The convergencebehavior of the integration over the whole
domainandover the two sub-domainsis shown in figure 5. It is clear
that the piece-wiseschemeusesfewer quadraturepoints,or hashigher
accuracy if only a smallnumberof quadraturepointsareused.Unfortu-
nately, this is notappreciatedin [4] anda smallnumber(24)of quadra-
ture pointsareusedfor the integrationover the whole domain. Since
thelowerthefrequency, thesmallerthedampingfactorin complex wave
numberk, hencethehigherthepeakof the integrandg � x
 , theformula-
tion in [4] hasa low frequency problem.

4. UsingNormal Derivative to Reducethe Condi-
tion Number

At very low frequency, G1 � �r � �r � 
 in equation(6) is almostthe sameas
G0 � �r �	�r ��
 in equation(7). Therefore,equation(1) is verysimilar to equa-
tion (2), particularly for a single-conductorexample,whereS and Sk
are the same. Therefore,the resultingsystemmatrix will becomeill-
conditionedat low frequencies.If an iterative methodis usedto solve
suchanill-conditionedlinearsystem,theconvergencewill beslow.

We developeda new formulationbasedon replacingequation(1) with
the normal derivative of Green’s secondidentity, and this reducesthe
conditionnumberof thelinearsystem.In thefollowing, we give a brief
derivation.

If we take thenormalderivative of theequation(1), we have
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Now the integral operatorsin equation(17) aredifferent from thosein
equation(2). Hencethesystemmatrix is not ill-conditionedat low fre-
quenciesany more.It shouldbenotedthattheunknownsin equation(17)
arestill Ex, Ey, Ez, ∂Ex

∂n , ∂Ey
∂n and ∂Ez

∂n . No extra unknownsareinvolved.
So we could simply replaceequation(1) with equation(17) andkeep
equation(2-5), andthis becomesour improved surfaceintegral formu-
lation. However, a hyper-singulartermappearsin equation(17). In this
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Figure 4: Distrib ution of the integrand, the top figure is the distri-
bution of the original integrand, the middle and the bottom figure
are the left and right part of the top figure
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paper, this hyper-singularintegral
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iscalculatedbyusingfinite-differencestoapproximatethenormalderiva-
tiveoutsidetheintegral.

5. Numerical Results

In this section,we presentsomecomputationresultsusingtheimproved
surfaceintegral formualtionandthepiece-wisequadraturescheme.We
first usea simplering structureto validateour panelintegrationscheme
asanalyticalformulasexist for the inductanceof a ring [6]. We then
useour improvedformulationto performtheanalysisof a spiral induc-
tor with or without a semiconductorsubstrategroundplaneanda mul-
tipin connector, andcomparethe resultsto the public domainprogram
FastHenry [2]. Thesparsepre-conditionermatrix usedin this paperis
constructedby ignoringtheinteractionbetweenpanelsin equation(1-3)
andusingequation(4) and(5) directly.

5.1 Ring
Thering is 10mmin radius,with asquarecrosssectionof thesize0 , 5mm
by 0 , 5mm. Theconductivity is thatof thecopper, which is 5.8e7. The
low frequency inductancecalculatedusing the formula in [6] is 48.89
nH. The resultsobtainedby usingFastHenryandthe formulationpro-
posedin [3, 4] enhancedwith the piece-wisequadratureschemepro-
posedin section3 areshown in figure 6 and7. The two resultsagree
well. The numberof filamentsusedby FastHenryis 960, 3840 and
15360,respectively. Thesurfaceformualtiononlyuses992panelsacross
the entire frequency range. It shouldbe notedthat the inductanceob-
tainedwith thesurfaceformulationis very closeto 48.89nHin the low
frequency range.This suggeststhatthelow frequency problemreported
in [4] hasbeeneliminatedwithoutusingthelinearizationtechniquepro-
posedtherein.Also,athighfrequency, theresistancescalesto thesquare
rootof frequency andtheinductancedropsalittle. Thissuggeststhatthe
skin-effect hasbeenwell captured.So this ring exampledoesvalidate
ourpanelintegrationscheme.

5.2 Spiral inductor
The improved surfaceformulationgeneratesa densematrix. So it can
not be usedfor analyzingcomplicatedstructuresdirectly. It could be
combinedwith an acceleratediterative methodthat allows for general
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Green’sfunction,suchasthePrecorrected-FFTalgorithm[7] or thehier-
archalSVD [8]. Sincewe have not yet implementedanacceleratedver-
sionof our formulation,in this sectionwe try to usea relatively coarse
discretizationto analyzea spiral inductor with or without a semicon-
ductorgroundplaneto validateour improved surfaceintegral formula-
tion. And sinceaninductorwith groundplaneis arelatively complicated
structure,we alsousethis exampleto show that the improved formual-
tion indeedconvergesfasterthantheformulationin [3].

The inner radiusof the spiral is 10mm. Its crosssectionis a square
of the size0.5mmby 0.5mm,and the spacingbetweentwo succesive
revolutions is 0.5mm. The spiral hastwo revolutions. The computed
resistanceandinductanceagreewell with thoseobtainedwith FastHenry,
asshown in figure8 and9. Again,it is worthmentioningthatFastHenry
doesnotcapturetheskin-effectathighfrequency dueto thefixednumber
of filaments. On the other hand,with a fixed numberof panels,the
improved surfaceformualtion haswell capturedthe skin-effect. This
validatesour improvedsurfaceformulation.

To testtheconvergenceof the iterative methodusedto solve the linear
system,we usethesamespiralandadda semiconductorgroundplane.
Thesizeof thegroundplaneis 42 by 42 mm. Its thicknessis 1mm. Its
conductivity is 0 , 005 that of the copper. We usethe improved formu-
lation andthe formulation in [3] to analyzethis structureat frequency
point 1Hz. Thenumberof unknowns is 2534. Theresidualof theGM-
RESversustheiterationsfor bothformulationsis shown in figure10. It
is clearthattheimprovedformulationconvergesmuchfaster.

5.3 Multipin connector
To further test the convergencebehavior of the improved formualtion,
we alsouseit to analyzea three-pinconnector. The numberof panels
is 544,andthenumberof unknowns is 3808. We againchoosethe fre-
quency point to be1Hz to seehow theimprovedformulationspeedsup
the convergenceat low frequency. The residualof the GMRESversus
the iterationsfor both formulationsis shown in figure 11. We cansee
thatthenumberof iterationshasbeenreducedsignificantly.

6. Conclusion

By taking the normalderivative of oneof the equationsin an existing
surfaceintegral formulation,we have reducedtheconditionnumberof
this formulation. Numericalanalysisof a spiral inductorover ground
planeexampleshows that the numberof GMRES iterationscould be
reducedby asmuchasonehalf. We have alsoproposeda piece-wise
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integrationschemeto improve the accuracy of the panelintegration in
thesurfaceformulation.Usingthis scheme,we have shown thatthelow
frequency problemreportedbeforeactuallydoesnot exist. Therefore,
thelinearizationtechniqueusedto eliminatethisproblemis unnecessary.
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