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Abstract— A new method is formulated for modeling cur-
rent distributions inside conductors for a quasi-static or a
full-wave electromagnetic field simulator. In our method,
we model current distributions inside interconnects using a
small number of conduction modes as global basis functions
for the discretization of the Electric Field Integral Equa-
tion. A very simple example is presented to illustrate the
potential of our method.

I. INTRODUCTION

As IC’s frequencies keep increasing toward the GHz re-
gion, quasi-static and full-wave electromagnetic analysis is
becoming progressively more important. In particular, sig-
nal integrity and electromagnetic interference problems can
often result in expensive post-prototype ad-hoc fixes and,
sometimes, force the complete redesign of the system lay-
out. In order to avoid these unpredictable additional costs
and design time, it is desirable to address EM problems
directly during design, for PCBs, packages, as well as IC’s.

In this paper, we address the most pressing task: the
verification problem. For a verification tool to be effective,
it should be able to handle the signal integrity and elec-
tromagnetic compatibility verification of the entire system
(e.g. a printed-circuit board, the IC packages, and the
IC power grid). Although fast algorithms have made such
analyses much more computationally tractable [1], [2], it
is still necessary to keep the number of unknowns to a min-
imum if full-system analysis is to become fast enough to be
used during design.

The most popular method for low-accuracy interconnect
and packaging analysis are the PEEC methods [3], [4]. Sur-
face impedance or surface formulation methods have also
been considered to try to improve the efficiency of PEEC
methods [5], [6], [7]. While many of these methods are
quite effective, most of them still require a large number
of unknowns to represent skin effects at high frequency.
In this paper, we describe a new approach to reducing the
number of unknowns required in electromagnetic modeling,
by using a very small number of parameters to capture in-
terconnect internal current distributions.

The paper is organized as follows: In Section II we sum-
marize the classical integral equation method. In Sec-
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tion III-A, we derive possible “conduction modes” from the
solution of the electric field diffusion equation. Based on
such modes, we define in Section III-B global basis func-
tions that we use in Section III-C for the discretization
of the Electric Field Integral Equation (EFIE). Finally, in
Section IV a very simple example is used to illustrate the
computational attractiveness of our method.

II. BACKGROUND

For a system of conductors embedded in a medium with
constant dielectric permittivity and magnetic permeability,
the conductor current distribution, J, and the conductor
surface charge, p, can be determined without computing
any fields exterior to the conductors. In particular, the
conductor currents can be related to the gradient of a scalar
potential, ¢>, using the electric field integral equation
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where V' is the union of the conductor volumes, r is a point
in V, p is the magnetic permeability, € the dielectric con-
stant, and w = 27 f is the angular frequency of the con-
ductor excitation. The scalar potential, on the conductor
surface can be related to the surface charge through
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where S is the union of the conductor surfaces and rg is a
point in S.
Since the charge in the interior of the conductor is zero,

V-JI(r) =0 (3)

for all points r in the interior of V. In addition, the cur-
rent normal to the conductor surface is responsible for the
accumulation of surface charge,

f-J(rs) = jwp(rs) (4)

where 11 is the unit normal at the point rg on S.

To compute accurate conductor current and charge dis-
tributions, or terminal input and coupling impedances, it
is necessary to solve the system of integro-differential equa-
tions given by (1)-(4). One standard numerical procedure
for solving (1)-(4) begins with approximating the volume
currents and surface charges by a weighted sum of a finite
set of basis functions w; and v; as in
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where I; and g, are the basis function weights.

A Galerkin procedure can used to generate a system of
equations for the weights. The procedure is to substitute
the representations for J and p in (5) and (6) into equations
(1) and (2) and then insist that the equation residuals are
orthogonal to the basis functions. The result is a matrix

where I and ¢ are vectors of current and charge basis func-
tion weights, respectively, and ¢ and V are the vectors
generated by inner products of the surface potential or the
volume potential gradient with the basis functions. The
matrices R, L and P are derived directly from the Galerkin
condition and are given by
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It is possible to tune the discretization to the problem by
selecting basis functions which accurately represent the ex-
pected current flow and charge density. When discretizing
relatively long and thin conductors, and for low accuracy
applications, piecewise-constant basis functions are typi-
cally used. The functions are generated by covering the
surface of each conductor with panels, each of which hold a
constant charge density. To model current flow, the interi-
ors of all conductors are divided into a 3-D grid of filaments.
Each filament carries a constant current density along its
length and this discretization of the interior captures skin
and proximity effects. An example for a section of thin
wire is shown in Figure 1.

Fig. 1. Discretization of a short section of thin conductor. The vol-
ume is discretized into parallel filaments along the length. Surface
is discretized into panels shaded in gray.

Once the basis functions have been determined and a
Galerkin method is used to discretize (1) and (2), then
the current conservation conditions in (3) and (4) must be
imposed. There are several approaches for imposing these
conditions once the discretization has been established [3],

8], [4].

III. USING CONDUCTION MODES AS CURRENT BASIS
FUNCTIONS

Using constant density filaments to discretize the current
in the interior of the conductors can produce large linear
systems at high frequencies. This is because many fila-
ments will be needed to accurately represent the proximity
and skin effects. We present in this Section an alterna-
tive choice for the volume discretization, where the basis
functions are chosen based on the physical behavior of the
current distribution inside the conductors.

A. Conduction modes

Combining the two curl Maxwell differential equations,
and using the “good conductor hypothesis” o > jwe, we
obtain the governing diffusion equation for the region inside
each conductor

V xV X E+ jwucE = 0. (11)

In terms of the current density, and of the skin depth § =

1/+/7 fuo, we have
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Let us assume the current flows only in the direction
of each conductor’s length J = J.a,, as in many surface
impedance methods, as well as in the Partial Elements
Equivalent Circuits (PEEC) method [3]. Let us discretize
each conductor only along its length (9.J,/0z = 0). Using
these assumptions, eq. (12) becomes:
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Solving the equation for example by separation of variables,
we find that a set of physically admissible solutions, or
“conduction modes” is [9]

JW) (@,y) = e PrTe Y, (14)
where p, and ¢, must satisfy the constraint:
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As an illustrative example of a very simple conduction
mode, let us choose
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This mode can account for cross-sectional current distribu-
tions decaying exponentially as 1/é from the edge of the
conductor. The left picture in Fig. 2 shows a graphical
representation of such current distribution.

The total cross-sectional current distribution can be
written as a linear combination of all the conduction modes

y) = Z C, e Pree=twy,
14
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Fig. 2. Graphical representation of a rectangular cross-section “edge
mode” (on the left) and of a “corner mode” (on the right). We
plot here current density for each point on the cross-section.

Boundary conditions and electromagnetic interactions de-
termine the amplitudes C, of each mode. When solving
the equations, we should consider the entire infinite set of
possible modes. However, in practice, we have found that
a very small number of these modes is sufficient to account
for the majority of the current distribution. For example, a
combination of four simple edge modes, one for each edge,
can account for most of the high frequency cross-sectional
conductor current distribution. At very high frequency,
few other modes need probably to be added to account
for corner effects. The simplest example of corner mode is
obtained by choosing

_ _L<1+J'>
pl/_qll_\/i 3

Asit is shown in the picture on the right in Fig. 2, this mode
can easily account for a cross-sectional current distribution
decaying exponentially from the corner of the conductor.

(19)

B. Selection of the global basis functions
Let the cross-sectional current density be represented by
a collection of global basis functions:

I(r) =) Lipwi(r) (20)
ik

where j is a summation index over all the peaces of conduc-
tors, and k is a summation index over all the global basis
functions chosen for each peace. The conduction modes
presented in the previous Section can represent a natural
choice for our global basis functions:
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where x and y are variables spanning the cross-section
of conductor peace j, and refer to one of its corners:
r = Tj ..+ Za;, +ya, .  Translation constants wj,,
Yjkv, and “plus” signs in front of p;z, and g;z, account for
modes decaying from the other corners or edges. We have
chosen to introduce a normalization constant Aj;, defined
such that parameter I, in eq. (20) represent the part of

current on the cross-section associated with basis function
Wik

Ajg =/ Zeip’“"(””*“”J"“’)eiq’“"(y*yfk”)dwdy. (22)
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In order to limit the number of parameters needed to de-
scribe the cross-sectional current distribution in each con-
ductor, summation over v in eq. (21) allows to specify a
combination of basic conduction modes into each single ba-
sis function. This feature is particularly convenient when
modeling PCB traces. In this case, one may wish to com-
bine the lower horizontal edge mode with the upper hori-
zontal edge mode into one single basis function as shown
in Fig. 3. In fact the very large aspect ratio of the PCB

Fig. 3. Example of a global basis function obtained combining two
horizontal edge modes. When modeling PCB traces, one can
safely assume that there are no significant proximity effect differ-
ences between lower and upper modes. Hence, one single basis
function can be used to combine for example both horizontal edge
modes.

cross-section traces, and the relative large separation be-
tween layers, typically do not allow significant proximity
effect differences between lower and upper horizontal edge
modes. Large differences, instead, can often be observed
between any modes on opposite lateral sides (left to right),
due to proximity effects. For this reason, for example the
two lateral edge modes should be assigned to two separate
basis functions.

C. Discretization of the EFIE

Substituting eq. (20) into eq. (1) and using a Galerkin
method we obtain:
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where we can recognize terms that could be interpreted as
equivalent resistances and partial inductances of the con-
duction modes basis functions
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With our choice of basis functions, the resistance matrix
R is a block diagonal matrix. In some cases, e.g. when
building Reduced Order Models (ROM), an easily invert-
ible diagonal matrix is more appealing [10], [11]. This



form for R can be obtained by previously orthogonalizing
the basis functions.

IV. EXAMPLE

We are in the process of implementing our new method
into a full-wave electromagnetic interference tool. At this
point, we can only give a simple example to show the com-
putational properties of the proposed method. We have
implemented code to compute the impedance Z of a typ-
ical PCB trace 250pm wide, 35pm thick, and 5mm long.
Fig. 4 shows the real part of the impedance (Re{Z}), and
the imaginary part divided by jw (L = Im{Z}/jw), as a
function of frequency. In this example, we have used a clas-
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Fig. 4. Re{Z} and L = Im{Z}/jw vs. frequency for a typical PCB
trace. The continuous curves are obtained from a classical very
accurate 18x14 filaments discretization approach. Circles indicate
results from our new method using, in this particular example,
only 3 global basis functions.

sical surface discretization into small panels to account for
surface charge, while we have used our conduction-mode
global basis functions to account for cross-sectional cur-
rent density. In particular, we have used these three basis
functions:

« one for the left side edge-mode (on the left in Fig. 2);

o one for a similar right edge-mode;

o and one for the combined upper and lower conduction
modes shown in Fig. 3.

In Fig. 4, we compared our method with one that uses the
same discretization into small panels, and a very accurate
cross-sectional discretization into 18x14 small filaments. In
the filament approach, we have used thinner filaments close
to edges and corners. In particular, as we get closer to edges
and corners we keep decreasing the filament thickness by a
factor of 1.5.

Compared to the accurate filaments solution, our method
shows (in the worst case):

o a 5% error for the resistive part of the impedance Re{Z},
« and a (very small) 0.2% error for the inductive part of
the impedance L = Im{Z}/jw.

In a second experiment on the same example, we tested
the convergence rate of the filaments discretization ap-
proach. In this experiment we have observed that, in or-
der to achieve the same errors of our conduction modes
method, the filament discretization method requires 10x7
small filaments per cross-section, with filaments thickness
decreasing at a ratio of 5 at each step as we get closer to
edges and corners. Hence in this example, for the same final
accuracy, our method produced a system 20 times smaller
than the filament discretization method.

V. CONCLUSIONS

In this paper, a new method has been presented for mod-
eling internal conductor current distributions in a quasi-
static or full-wave electromagnetic simulator. We have
shown how to derive conduction modes, and how to use
them as global basis functions for the discretization of the
Electric Field Integral Equation. Finally, we presented the
potential of our method on a simple example, where lin-
ear systems 20 times smaller than the classical filament
discretization methods are obtained for the same final ac-
curacy.
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