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ABSTRACT

Computing drag forces on geometrically complicated
3-D micromachined structures, such as an entire comb
resonator, is a challenging problem. The recently de-
veloped FastStokes solver, based on precorrected-FFT
accelerated iterative methods, has made analyzing such
problems much less expensive. For this reason, there
have been several extensions to the program to analyze
unsteady flow and to improve computational efficiency.
In this paper we develop several additional extensions
to FastStokes. In particular, the direct BEM formula-
tion is used to allow mixed velocity-pressure boundary
conditions. We demonstrate the accuracy of the nu-
merical approach by comparing computed results to the
results from the indirect BEM formulation and low fre-
quency asymptotic expansions for an oscillating sphere
with Dirichlet boundary conditions. We show the ability
of this solver to handle problems with mixed boundary
conditions. Finally, the drag force on a micro-resonator
packaged in the air is presented.
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INTRODUCTION

Analysis of the behavior of micromachined devices
packaged in air or fluid requires the determination of
drag forces and traction distribution on the devices due
to the surrounding fluid. Since the spatial scales are
small, the fluid can often be analyzed by neglecting the
convective term. That is, one can assume the flow is
governed by the Stokes equations. Even with this sim-
plification, the geometrically complicated nature of most
three-dimensional microfludic devices makes them ex-
pensive to simulate with standard finite- element or fi-
nite difference based Stokes flow solvers. The recently
developed FastStokes solver[1], based on precorrected-
FFT accelerated iterative methods[2], has made analyz-
ing such problems much less expensive. For this reason,
there have been several extensions to the program to
analyze unsteady flow[3] and to improve computational
efficiency|[4].

In this paper we develop several additional exten-
sions to FastStokes. In particular, the direct BEM for-
mulation is used to allow mixed velocity- pressure bound-
ary conditions, but the formulation requires extensions
to the analytic integration formulas and the precorrected-
FFT interface described in [3]. In the next section, we
describe the boundary-element approach to solving the
frequency-domain unsteady Stokes equations using the
direct formulation and briefly describe the precorrected-
FFT algorithm. In sections 3 and 4 we describe the ex-
tensions required by this formulation, that of computing
integrals of the frequency-domain traction Green’s func-
tions and implement of this function in the precorrected-
FFT algorithm. Next, we describe results using the de-
veloped program. We demonstrate the accuracy of the
this approach by comparing computed results to our pre-
vious results based on the indirect BEM formulation[3]
for an oscillating sphere. The drag force on a micro-
resonator packaged in the air is also presented, to show
that the method can be used to analyze practical prob-
lems. Finally, in Section 6, we give conclusions and ac-
knowledgments.

FORMULATION

In the frequency domain, the direct boundary inte-
gral equations for unsteady Stokes flow are [5]

u;(xo) = (1)
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where S is the surface on the object in an infinite fluid,
and the two Greens’ functions are given by [5]
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In (1), u;(xo) is the jth component of the velocity vec-
tor at the source point xg, f is the Stokeslet density
function that corresponds to the surface traction, n is
the normal vector, p and p are the density and the vis-
cosity of the fluid respectively, #; is the ith component
of the relative position vector between the source point
and the field point, i.e. #; = xg; — x;, 7 is the length
of the relative position vector (r = |xo — x|), A is the
frequency parameter which is defined as \> = iw"TjiZ, w
is the frequency of the fluid and d is the characteristic
size of the object.

If a piece-wise constant collocation scheme is used to
solve (1)[6], then the surface of the object is discretized
into n small panels and the unknown quantity, either the
Stokeslet density function f or the velocity u, is assumed
to be uniformly distributed on each panel. A system of
equations for the panel unknowns is then derived by
insisting (1) is satisfied at each panel centroid. The
result is a system which relates the known vector b to
the unknown vector x , as in

b! x!
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= P(w) (7)
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where b? and x? are the known and unknown vectors at
the ith panel, P is a 3n x 3n matrix whose elements are
given by one of two cases. If fJ is unknown, then
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Otherwise, if W is unknown,
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Above, x’ denotes the centroid of the ith panel and Aj
denotes the surface of the jth panel.

SOLUTION ACCELERATION

The linear system in (7) can be solved to compute
the unknown quantities. In this paper, instead of the
direct approach, e.g. Gaussian Elimination, an iterative
method, complex GMRES]7], is employed to solve the
system. This reduces the computing time from O(n?) to
O(n?). To further accelerate the computation, a precor-
rected FFT technique[2] is employed. This technique
computes the matrix-vector product in O(nlogn) op-
erations. Thus, for problems with reasonably homoge-
neous distributions of panels, our code has O(nlogn)
complexity.

In the precorrected FFT approach, the problem do-
main is first divided into a three-dimensional array of
small equal sized cubes, where the cube size is selected
so that each cube contains a small number of panels
(typically less than 20). The shared vertex points of
the cubes form a uniform coarse grid, and this grid is
used both to separate nearby panels (panels in adja-
cent cubes) from distant panels (panels in nonadjacent
cubes). The interaction between nearby panels is com-
puted directly in the standard fashion, and the interac-
tion between distant panels is computed by projecting
onto, and interpolating from, the coarse grid.

The implementation of the precorrected-FFT algo-
rithm then consists the following four major steps (for
the purpose of illustration, in the following paragraph,
the unknown vectors are assumed to be the panel forces).
1. project the panel forces onto a uniform grid of point
forces.

2. compute the grid velocities due to grid forces by
performing a fast convolution using an FFT.

3. interpolate the grid velocities onto the panels.

4. directly compute nearby interactions.

The projection of panel forces onto the grid, and the
interpolation of panel velocities from the grid, are per-
formed using polynomial interpolation [5]. Each panel
is projected onto a small number of surrounding grid
points (typically 27), and each velocity is interpolated
from a small number of surrounding grid points (also
typically 27). It should be noted, however, that the
Stokes flow problem is a vector problem, and therefore
three force components must be projected and three ve-
locities must be interpolated. Another Stokes flow spe-
cific issue is that the integral equation (2) includes two
different Green’s functions, and care must be taken to
handle the various Green’s functions efficiently. Finally,
the nearby interactions require the evaluation of inte-
grals with singular and near singular kernels. In the
next two sections we discuss the nearby and grid inter-
action calculations.

NEARBY INTERACTION

In the direct BEM formulation, the calculation of the
interaction of nearby panels needs the evaluations of the
integrals of two unsteady Stokes Greens’ functions, G
and T', over the panels. In simplified form, the integrals
to be evaluated are
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where 7, Z;, ©;, A and B are as described above.
As shown in [3], I; can be evaluated accurately by ex-
ploiting the fact that the unsteady Stokes Greens func-
tion becomes the steady Stokes Greens’ function as A —



0. To evaluate I>, again we separate it into two parts.
Let
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Note that Is; is the integral of the steady Stokes
Greens’ function. It is evaluated analytically using an
extension of the techniques described in [3]. The inte-
grand of the second integral, I3, is a smooth function
of . This can be easily proved by examining the Taylor
series expansion of the integrand about R = 0. Numeri-
cal quadrature is used to evaluate this part. In the near
singular cases, i.e., when r is very close to 0, the Taylor
series expansion of the integrand of I»5 is used to com-
pute the values of this integrand at Gaussian points to
avoid the cancellation errors.

GRID INTERACTION

Using the direct BEM formulation in (2) has ram-
ifications for the precorrected-FFT method. The term
Jolui(x)Tijr (X)np(x)]ds contains several Green’s func-
tion components, and this can make computing the grid
interactions expensive. To evaluate the needed quanti-
ties on the grid, one could project the nine panel quanti-
ties u;ny onto the grid and then evaluate integrals with
the 27 T}, components using 27 convolutions. There is
a more efficient approach that can be derived by noting
that the traction Greens’ function 7 is a linear combina-
tion of the derivatives of the unsteady Stokeslet Greens’
functions G and the potential Greens’ function %, ie.
8(%) N 0G; n Bij.
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The derivatives of the Greens’ functions, for example,

%(;Zj , can be represented approximately using weighted

combinations of G';; at m grid points as in
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where the grid points are the ones which surround the
panel, and m is equal to the number of points used in
projection and interpolation (again typically 27).

Table 1: A sphere in an oscillating flow, Dirichlet bound-
ary condition

Direct BEM Indirect BEM Kanwal’s
Formulation Formulation solution
w Drag.r | Drag.i | Drag.r | Drag.i | Drag.r | Drag.i

0.0 18.7947 0.0 18.8155 0.0 18.8496 0.0

0.0001 | 18.9273 | 0.1328 | 18.9441 | 0.1291 | 18.9828 | 0.1331

0.001 19.2141 | 0.4213 | 19.2354 | 0.4266 | 19.2710 | 0.4215

0.01 20.122 1.347 20.1429 1.395

0.1 22.9926 4.408 22.9831 4.884

Thus, instead of projecting w;n; directly onto the
grid, we project weighted u;nj’s onto the grid. This
reduces the number of the convolutions from 27 to 7.
This can be seen clearly in the following equation,
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where w', w?, w? are the weighted functions associated

with different Greens’ functions.

RESULTS

Withour loss of generality, we assumed unit kine-
matic viscousity in the following numerical examples
except the micro-resonator. First, a sphere oscillating
in an unbounded viscous fluid with velocity u = uge™?
was simulated. The drag forces exerted on the sphere
at different frequencies obtained using the direct BEM
formulation are shown in Table (1), together with the
results calculated from the indirect BEM formulation
and the asymptotic solutions (Kanwal’s solutions [6])
at low frequencies. In these experiments, only Dirich-
let boundary condition were considered. Results show
a good agreement between the direct and indirect BEM
formulations. The slightly lost accuracy in the direct
formulation is due to the fact that the right-hand side
vector of the linear system (7) is also calculated approx-
imately using the precorrect-FFT technique. In the in-
direct formulation, the right-hand side vector is exact.

The major advantage of the direct BEM formulation
is that it allows mixed velocity-pressure boundary con-
ditions. Table (2) shows the drag force for the same
sphere with velocity boundary conditions on half of the
sphere and pressure boundary conditions on the other
half. The analytic solutions were used to prescribe the
boundary conditions in the steady case. The total num-
ber of panels used in the simulation was 3072.

One application of this solver is to accurately com-
pute the drag force on a micro-resonator which leads to



Table 2: Drag force for the sphere moving uniformly in
an infinite fluid flow, mixed boundary condition.

Direct BEM Formulation
18.7834

Analytic Solution
18.8496

25 25

Figure 1: A micro-resonator with a substrate under-
neath

the predition of the quality factor of this device. The
micro-resonator is oscillating in the air above a silicon
substrate. Figure (1) shows the meshed micro-resonator
and the substrate. Total drag force acting on the res-
onator is 171.33nN. The time to compute the drag force
using direct methods (for example, the Gaussian elimi-
nation) would have been 550 hours, but using the fast
solver, the drag force can be computed in 32 minutes
in the indirect BEM formulation and one hour in the
direct BEM formulation.
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