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ABSTRACT

In this paper we present a discretized integral for-
mulation for calculating the frequency-dependent induc-
tance and resistance for 3-D structmres that contains
permeable materials. The method uses a magnetic sur-

face charge formulation, and we present analytic techiques

for evaluating the required integrals. Computational re-
sults are presented and compared with analytic formulas
to demonstrate the accuracy and versatility of the ap-
proach.
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INTRODUCTION

In order to generate large displacements in microme-
chanical devices, several new designs generate large forces
using magnetic fields combined with high permeabie ma-
terials [1]. To efficiently analyze the forces in these com-
plicated 3-D structures with permeable materials, we
have been working on approaches to extend the Fas-
tflenry 3-D inductance extraction program [2] to in-
clude non-constant permeability structures. The ap-
_ proach used is based on including fictitious magpetic

surface charges [3]. This method avoids numerically cal-
culating fields inside the high permeability materials, as
these small fields are difficult to compute accurately due
to cancellation errors.

In the next section we briefly describe the FastHenry
program. In Section 3, we describe our integral formula-
tion and show how the individual integrals can be eval-
uated efficiently. In Section 4 we present iwo computa-
tional experiments. In the first experiment we demon-
strate the validity of our formulation and discretization
by comparing our numerically computed results to ana-
lytically derived results for a simple structure. We then
show results on a more complicated example which ex-
hibits frequency dependent inductance, and variation of
inductance with permeability. The paper ends with con-
clusions and acknowledgements.

"FASTHENRY BACKGROUND

FastHenry{2] uses a standard filament discretization
of an integral formulation of magnetoquasistatics[6]. The
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Figure 1: Current sources are outside the magnetic ma-
terial.

integral equation is
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where @ is referred to as the scalar potential, and V'
is the volume of all conductors. The conductor current
density, J, and the scalar potential can be computed by
simultaneously solving (1) with the current conservation
equation,

V-J=0. (2)

Discretization of (1) and (2) leads to 2 dense linear
system of equations, and the FastHenry Program solves
that system efficiently by combining a loop formulation
with a multipole-accelerated iterative method[5,7).

MAGNETIC INTEGRAL
FORMULATION

Coupled Integral Equation

We assumed that regions which contain magnetic
material are separated from current carrying conduc-
tors, as shown in Figure 1, as it is the case in many
magnetic problems.

In our method for handiing permeable materials, we
get two coupled integral equations. The first integral

190



equation is a modification of (1),
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where J is the current density, p,, is the fictitious mag-
netic charge density on the permeable material surface,
Sm is the surface of the permeable material, and ¢ is
the scalar potential. Note that the second term and the
third term of (3), divided by jwp, represent the vector
potential due to the currents and the the vector poten-
tial due to fictitious magnetic charges, respectively.

The second integral equation is derived by applying
the boundary condition of the continuity of the normal
magnetic flux density in free space and in the magnetic
material. For a point on the magnetic material interface
the following equation is satisfied,
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where n(r) is the unit vector normal to the magnetic
material surface calculated at point r. Note that the
second term of (4) represents the normal magnetic field
due to currents, and the third term represents the nor-
mal magnetic field due to fictitious magnetic charges.

Discretization

Equations (3) and (4) are discretized by dividing the
conductors into filaments over which the current is as-
surmed constant and by dividing the permeable material
surface into panels over which the magnetic charge is as-
sumed constant. Then, the filaments are combined into
loops. By using these loop and panel basis functions to
represent the currents and charges, we convert (3) and
(4) to a system that can be solved numerically.

For each current loop, the following equation is for-
mulated
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where Rioopy;, Imi, and Vioopys; are the resistance of,
the current in, and voltage actoss the #** current loop
respectively. gm; 1s the fictitious magnetic charge den-
sity on the j™panel or the magnetic material surface.
up; is the unit vector in the i** loop direction.

urrent loop

Figure 2: The surface of the current loop are divided
into triangles in calculating the integral L,.

The discretized boundary condition equation is
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where g, is the relative permeability of the magnetic
material, and n, is the unit vector normal to the mag-
netic material surface calculated at point p.

Equations (5,6) can be summarized in matrix form
as

[ a8 o
Calculating the integrals

Consider the term corresponding to L, in (7), which
comes from integrating 1/r over the surface of a current
loop and evaluating the result at point at the perme-
able material surface. Since the shape of the surface of
the current loop is arbitrary, we chose it to be a tented
surface, as shown in Figure 2. This tented surface is
composed of triangles, and so L, is given by:

- ) 1
L,= 4—? %:/Pm(" )dSepre Vr Zr——r_’T - n(L)dSA(8)

where n(2) is the normal to triangle on the current loop
surface. The integral | p,(r')dS.,., V- o - n(A)dSa
is the potential due to a dipole charge distribution on a
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Figure 3: The surface of the permeable material is di-
vided into triangles in calculating the integral A n,.

n{r)

Figure 4: The conductor are discretized into filaments
in calculating the integral Hnj.

triangles. This potential can be evaluated analytically
[8,9].

Now consider the Hn, term in equation (7). This
term is equivalent to calculating the normal magnetic
field at a point due to a magnetic charge distribution.
Having discretized the permeable material surface into
triangular panels, as shown in Figure 3, made it possible
to caleulate Hn, analytically[g].

The last term that to be considered is & ny. The
conductors are discretized into filaments, as shown in
Figure 4. Then by transforming each filaments to the
panel coordinates, an analytical formula can be derived
and used for Hny.

As described above, each of the terms in equation
(7) can be evaluated analytically.

RESULTS

To demonstrate the correctness of this formulation,
consider the example of a current loop over an infinite
thickness magnetic substrate, shown in F igure 5. As-
suming low frequency, the current distribution will be
uniform across the current loop. Thus, the inductance
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Figure 5: Planar circular current loop of radius R, and
hight Z above an infinitely thick magnetic material of
permeability u.

determined by solving equation {7) can be written as
L = Lj + Lys where Ly is the self inductance of the
loop if there were no magnetic substrate, and Ly is the
extra inductance due to the presence of the magnetic
material. L; is equal {0 the second term in Equation 1,
divided by jw. The term Ly can be computed using
the fictitious charge method, but in this simple example
Ly can also be determined by the method of images.
In Table 1, we compare Ly computed by our fictitious
charge numerical method with that computed using the
less geperal method of images and the tables in 4]. As
Table 1 demonstrates, the two methods agree.

R | Z | Numerical Ly | Lys by image | Error
51 1 6.7076 XnH 6.75XnH | 0.6%
414 0.5652XnH | 0.5674XnH | 0.4%
271 0.9817XnH | 0.9882XnH | 0.7% |
12 0.0258XnH | 0.0260XnF | 0.3%
13 8.4000XpH 8438XpH | 0.8%

Table 1: Comparison between Ly calculated using our
method and the one using the image principle and tables
in {4]. Dimensions of R and Z aré in mm. X = fe=t,

Generally, the conductor current distribution is not
known a priori, and must be computed by solving the
coupled integral equation. As an example, consider a
current loop of square cross section surrounding a spher-
ical magnetic material, as shown in Figure 6.

Figure 7 shows the frequency response of the total
inductance of the example in Figure 6. Note the high
frequency inductance is higher than the low frequency
one, due to the skin effect. The frequency at which the
inductance start to drop is mainly determined by the
size of the cross section of the conductor.

Figure 8 shows that for the example in Figure 6, the
inductance increases as the permeability of the mag-
netic material increases, up to a Limiting value. The
inductance for the ¢ = 1 case matches exactly the self
inductance of the loop calculated by FastHenry.
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Figure 6: current loop of square cross section surround-
ing a spherical magnetic material. R=Imm, a=1.75mm,
b=2.25mm.
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Figure 7: Total inductance frequency response of the
structure in Figure 7
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Figure 8: Total inductance variation with the perme-
ability of the magnetic material for the structure in Fig-
ure 6

CONCLUSIONS AND
ACKNOWLEDGEMENTS

An integral formulation for calculating 3-D induc-
tance for structures that contains perreable materials
has been developed. The method avoids numerical can-
cellation errors that occur when calculating fields in-
side highly permeable materials. We showed that for a
simple discretization technique, the integrals in the for-
mulation can be computed analytically. Computational
results were presented and compared with analytic for-
mulas to demonstrate the accuracy and versatility of the
approach. We expect to be able to combine our perme-
able material approach with the multipole-accelerated
iterative method used in FastHenry so that Very com-
plicated 3-D structures with permeable materials can be
analyzed quickly.
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