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ABSTRACT

It is well known that MEMS based microfluidic de-
vices operate in very low Reynolds number regime (Re <
1}. Analysis and design of such microfluidic devices re-
quires the solution of incompressible viscous fuid fiow
or incompressible Stokes equations. In this paper we
present a new accelerated boundary-element method to
rapidly solve the integral form of the Stokes equations.
The computational complexity of the proposed approach
is O(Nlog(N)), where N is the number of panels used
to discretize the surface of the micromachined device.

Keywords: Microfluidic Devices, MEMS, Boundary
Element Methods, Precorrected FFT Techniques, Mi-
croflow Sensors

INTRODUCTION

Many integrated microfluidic systems such as chem-
ical analysis and liquid dosage systems contain a mi-
croflow sensor as one of the components. Microflow
sensors have been designed based on several principles:
mass flow, ion pulse generation, differential pressure,
hot wire anemometry and drag force [2]. The key de-
sign problem in a drag force based microflow sensor
is determining the shape of the obstacle on which the
fiuid will exert a drag or a force. These obstacles are
innately three-dimensional and typically geometrically
complicated making them expensive to simulate with
standard finite-element based solvers. The drag on mi-
cromachined devices can be computed by the solution
of Stokes equations.

In this paper we present a new approach, the precor-
rected FFT accelerated boundary-element method. to
rapidly solve the integral form of the Stokes equations
to compute the drag on complicated micromachined ob-
stacles. The computational complexity of the approach
is O(Niog(N)), where N is the number of panels used

to discretize the surface of an obstacle, and so it can be
used to analyze complicated obstacles in a few minutes.

PROBLEM FORMULATION

The fluidic forces on an arbitrary and complicated
micromachined device can be computed by considering
the How of an incompressible viscous fiuid past the arbi-
trary shaped micromachined device at very low Reyrolds
number. The governing equations of an incompressible
viscous fluid at very low Reynolds number are summa-
rized as (see e.g. [6))

B%u;(z) _ op(z) (1)
8$j 8zj 525
Ovi(z}
835 = 0 (2)

where p is the viscosity of the fluid, z = (21, 25,23) €
{l., £, is the thres dimensional unbounded domain ex-
terior fo the micro object, v = {1y, vs,vs) is the fuid
velocity vector, v; denotes the i — th component of the
fluid velocity and p is the pressure. The boundary of
the micro object is denoted by an arbitrary surface S.
Equations (1) - (2) are also referred to as the Stokes
equations.

Since the governing equations are linear and are posed
in ar exterior domain, an efficient approack, without re-
gorting to meshing the exterior of the domain, is to con-
sider a boundary-integral or a boundary-element formu-
lation for the Stokes equations. For Stokes equations a
boundary-integral formulation can be developed involv-
ing quantities defined only on the surface of the object.
For microelectromechanical applications, the deforming
or the moving object interacts with the fluid only on
the surface, and the fluidic forces need to be computed
only on the surface on the object and not in the interior
of the object. For this reason, boundary-element meth-
ods seem best suited for modeling the Stokes equations
for microelectromechanical applications. Starting from
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the original work by Youngren and Acrivos in 1975 [9],
boundary-element methods for Stokes equations have
been considered by several authors (see e.g. [6], [7] and
references therein).

The integral equation for the velocity at a point z on
the surface of the body is given as

u(e)= £ [s Gulz.0)f;(w)dS, + (3)
o= [s Tijelz, y)ns (y)ow (y)dS,
zeS
where
Gijlzy) = fi + &= yfs.(zj t 2), (4)
zy =y
Tyrlzy) = &2 y,-)(zj; Yi)(zs — ) 5)
zy

In the above equations, v; is the i — th component of
the velocity vector, £ = (z1,T3,3) is the source point,
¥ = (y1.¥2,¥3) is the feld point, 74y = |jz — y|} is the
distance between points z and ¥, n = (n1,n2,ns) is the
unit outward normal vector, f; = oy;m; is the § — th
component of the traction vector, and the stress tensor
Tij is defired as
duv; | Ouj

G = péz: + ”(azj + EE;) (6)
In this paper we will focus on the case where the ve-
locities on the surface of the object are prescribed and
the unknowns are the tractions on the surface. In par-
ticular, the velocity vector v is assumed to satisfy the
no-slip boundary condition on the surface of the object
ie

vu(z)=Vi(z) ze€8. (7

When the prescribed velocities are constant (i.e. v;(z) =
Vi), equation (3) simplifies to

vi(z) = % fs Culo.0)f@)dS,. (8

A standard approach to numerically solving (3) for the
tractions (or forces) is to use a piece-wise constant col-
location scheme. That is, the surface of the object is
broken up into n small panels, and it is assumed that
on each panel a force is uniformly distributed. The re-
sult is a dense linear system

Af=g 9

where 4 € REM*E ) £ ¢ RB7) 5 the vector of panel
forces, g € R(*™) is the vector of known right-hand side
involving velocity terms, and

Austmom) = [ ( ey (10)
7 v :
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wherem,n=1,2,3;,J=1,2,...,n; :.r:g) is the m—th
coordinate of source point I, y,(,J) is the n—th coordinate
(m,n take values of 1,2 and 3) of field point J, and
Tangtn = I3 — y{9|| is the distance between source
and field points. Note that each A;; is a 3 x 3 matrix
and is symmetric (i.e. Ary(m,n) = Ary{n,m)). Note,
however, that A4 is not symmetric, Ary £ Ajyr.

The dense linear system of (9) can be solved to com-

-pute the unknown force vector on each panel. The direct

approach of solving (9) via Gaussian elimination, which
requires O((3 - n)3) operations and O((3 - n)?) storage,
becomes computationally intractable if the number of
panels exceeds several hundred. I, instead of Gaussain
elimination, an iterative approach such as GMRES [8]
is used to solve {9), then each iteration of the GMRES
will cost (3 - n)? operations. This is because the matrix
in (9) is dense, and therefore evaluating candidate so-
lution vectors involves a dense matrix-vector multiply.
Several sparsification techniques for A are based on the
idea of directly computing only those portions of Af
associated with interactions beiween panels which are
close to each other. The rest of Af is then somehow
approximated to accelerate the computation [3), {1}, [4].

PRECORRECTED FFT METHOD

The acceleration technique proposed in this paper is
the precorrected FFT technique, which was originally
developed for the solution of 3-D potential equations [5]
for capacitance calculations. While the Green’s function
for the potential equation is scalar, the Green’s function
for the Stokes equations is vectorial (see equation (4)).
In this paper, the precorrected FFT approach is ex-
tended and developed for the vectorial Stokes equations.
The key idea in the precorrected FFT method is that the
interaction between nearby panels is computed directly
and the interaction between far-off panels is computed
using a coarse grid.

In the precorrected FFT approach, the object which
has been discretized into n small panels ic enclosed by
a parallepiped. The parallepiped is subdivided into a
k x I xm array of small cubes so that each small cube
contains only a few panels. Figure 1 shows a3 x3x 3
array of cubes enclosing a discretized three-finger comb
structure. An approach to compute distant interactions
is to represent the given cell’s force distribution with a
small number of weighted point forees. For example, in
Figure 1{b)}, each cell is represented by a 3 x 3 x 3 array
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of point forces. If the point forces all lie on 2 uniform
grid, for example at cell vertices, then the computation
of the velocities at the grid points due to grid forces
is a discrete convolution which can be performed using
the FFT. The precorrected FFT technique to compute

=
PP

® & & 0o 0 ¢ @

Figure 1: (a} A three-finger comb structure discretized
into panels. The comb structure is enclosed by a 3x 3x 3
array of cubes. (b) Superimposed grid corresponding to
the cell decomposition. In each cell 2 3 x 3 x 3 array
of grid points is used to represent the long range inter-
actions between panels. The grid extends outside the
problem domain because the number of grid points is
required to be a factor of two for FFT calculations

the matrix-vector product Af (the matrix-vector prod-
uct has dimensions of velocity and this product will be
referred to as the computation of velocity in the precor-
rected FFT approach) is summarized in Figure 2 and is
implemented in four steps:
1. projection of panel forces onto a uniform grid of
point forces :

2. coxﬁputation of grid velocities due to grid forces
using an FFT

3. interpolation of grid velocities to panel velocities
and '

4. computation of precorrected direct interactions or
nearby interactions

Only the first step is described here in detail, and the
remaining steps follow from the work described in [5].

Projection of Panel Forces

To compute the grid forces used to represent the
forces in cube k, consider the following scheme: sup-
pose a p X p X p array of grid forces is used to represent
the forces in a cube. For example, in Figure 1(b) a
3 x3x 3 (p=3) grid is employed to represent the cube
forces. Next, N, test points are selected on the surface
of a sphere of radius r, which has cube k as its center.
Then, velocities due to the G = p® grid forces are forced
to match the velocities due to the cube’s actual force
distribution at the test points, i.e.

HS f(k) = HI f(k) (14)

Figure 2: 2-D Pictorial representation of the four steps
of the precorrected-FFT algorithm. Interactions with
nearby panels (grey area) are computed directly, inter-
actions between distant panels are computed using the
grid.

where f(k) € ®*N>* is a vector of forces in cube k, f(k)
€ R¥Cx1 5 5 vector of grid forces (a hat symbolizes
that the quantity is associated with the grid), H ¢
RE-NIx(@G) j5 the mapping between grid forces and
velocities at the test points and is given by

L @ =)l - )

Ti(f}y(-”

é
Hﬁ(m,n) = %
To(I)yld)
oty

(15)
I=12..,N;sJ=12..6G mn=123 &
is the mth coordinate of grid node J, 27 is the nth
coordinate of test pomt J, and Tyt 18 the distance
between points z(!) and y/). Note that each HY is
a 3 x 3 matrix. H7* € RENI*EN) 45 the mapping
between panel forces and velocities at the test points
and is given by

Ft Omn (xi,{) — zg))(zg‘n - zy))
HIJ(m: n) = f 73
Ay T2Tialh) 2zt 3)

' (16)
I=12...NyJ= L2,...,N;; m,n=1,2,3 N, is
the number of panels in cube %, xﬁ;f ) is the mth coordi-
nate (centroid) of panel J, z) is the nth coordinate of
test point I, and r,(1),s) is the distance between points
2 and ). Note that each HJf is a 3 x 3 matrix.
The vector of grid forces can then be computed as

F&) = W(k)f (k) (17)

where
W(k) = [E]" [H7] (18)

[H 5*(]? indicates the pseudo-inverse of matrix H9. W (k)
€ RB-GIx(N5) is defined as the projection operator for
cube/cell k and the accuracy of the projection operator
hinges on the proper selection of the test points on the
sphere. The accuracy of the projection operator can be
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improved by selecting the test points to be abscissas of
a high-order quadrature rule.

RESULTS

Numerical resuits are presented for an infinite fluid
flow past three obstacles: a spheroid, a beam and a
comb structure. An analvtical solution is available for
the spheroid example, and a comparison between direct
and precorrecied FFT methods for the drag and CPU
time is presented in Table 1. Note that the precorrected
- FFT method is much faster than the direct method and
the CPU time for the precorrected FFT method grows as
Nlog(N). The beam structure considered here is 80um
long, 10um wide and 10um thick and the drag on this
beam in a infinite fluid flow for constant velocities is
plotted in Figure 3(a). Note that the drag increases
linearly as a function of velocity i.e. as the velocity in-
creases the drag also increases. In these calculations,
the viscosity of the fluid is assumed to be one. The drag
on the beam for several different fluids can be computed
by simply multiplying the value given in Figure 3(2) by
the viscosity of the fiuid. If the viscosity of the fluid is
not known, then results such as those in Figure 3 can be
used to determine the viscosity of the fluid i.e by know-
ing the obstacle (beam, in this case) and the velocity of
the fluid, one can compute the material properties (such
as viscosity) of an unknown fiuid.

Table 1: Comparison of direct and precorrected FFT
(P-FFT) methods for the drag and CPU(sec) for the
spheroid example. The analytical drag is 22.69. A *
indicates that the technique requires more than 1 GB of
memory

# Panels Drag CPU{sec)
Direct | P-FFT | Direct | P-FFT
192 22,14 | 21.97 26 8
768 2254 | 2246 561 40
3072 22.66 | 22.63 30785 415
12288 * 22.66 * 2943

The final example considered here is a comb struc-
ture as shown in Figure 4. The drag per unit viscosity
as a function of fluid velocity for the comb structure is
plotted in Figure 3(b). The comb structure considered
here has more than 6000 panels and the precorrected
FFT accelerated boundary-element method takes under
10 minutes to compute the drag on this structure, while
the direct method is about 300 times slower.
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Figure 3: Drag per unit viscosity as a function of the
fluid velocity for (a) a beam structure and (b) a comb
structure

Figure 4: Infinite fluid flow past a comb
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