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ABSTRACT

In this paper we describe both how to extract rigid
bodies given an input file of elements, and how to ef-
ficiently construct and solve the rigid-elastic system of
equations. Results are given to demonstrate that on a
typical comb drive problem, our efficiently implemented
mixed rigid-elastic simulator is more than 300 times
faster than a purely elastic simulator. We also demon-
strate that the mixed-regime simulator can be used as
part of a coupled-domain simuiator to perform 3-D elec-

tromechanical analysis of an entire comb drive in under

ten minutes.

Keywords: MEMS,Rigid,Electromechanical,Coupled,
Simulation.

- INTRODUCTION

A MEMS structure often consists of a behaviourally
rigid part and an elastic part even though it is built from
a single material. Therefore, it is possible to model part
of the structure as rigid for a rapid self-consistent elec-
tromechanical analysis {Senturia et al [1]). Ar example
of such a structure is shown in Figure 1.

One approach to reducing the high computational
cost of coupled electromechanical simulation of three
dimensional micro-electro-mechanical devices is to al-
low designers to use rigid body approximations where
appropriate. To gain from such an approach, it is essen-
tial that the mixed-regime rigid-elastic system be con-
stucted automatically and simulated efficiently. In this
paper we describe both how to extract rigid bodies given
an input file of elements, and how to efficiently construct
the rigid-elastic sysiem stiffness matrix. In the next sec-
tion, we give a brief background in finite-element elasto-
static analysis and rigid body motion. In section three,
we describe how we implemented a mixed rigid-elastic
stmulator. In section four we give computational re-
sults demonstrating that the rigid-- =stic simulator is
more than 300 times faster than a pu: iy elastic simula-
tor for a comb-drive problem. Finally, we demonstrate
that the mixed-regime simulator can be used as part of
a coupled-domain simulator to perform 3-D electrome-
chanical analysis of an entire comb drive in under ten
minutes.

Comb Drive Accelerometer

Figure 1: A comb drive accelerometer

BACKGROUND

Finite-Element Elastostatics

In steady-state elastostatics, a structure’s deforma-
tion due to applied forces can be determined by solv-
ing a nonlinear partial differential equation representing
force equilibrium. Following the total Lagragian formu-
lation [7], let z be a point on the undeformed structure,
and denote the displacement of that point = during de-
formation as u(z). Then u(z) must satisfy the force
equilibrium equation

F(u(=)) — p(u(z)) = 0, (1)

where p(u(z)) is the force on the deformed structure and
f represents the nonlinear differential operator which re-
lates the structure’s deformation to the resulting stress.
H a standard isoparametric Galerkin finite-element method
is used to discretize (1), the result is a nonlinear system
of equations for the node displacements,

F(U)- P(U) =0, 2

where U € R3" is a vector of node displacements, F :
R — B3 is the discretized stress-displacement rela-
tion, and P is the discretized applied force.

Some variant of Newton’s method is typically used
to solve (2} for U, in which case a sequence of linear
systems must be solved as in

KU —URy = PU*y - F(UF) (3)
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Figure 2: Matrix size reduction

where £ is the Newton iteration index, U¥ is the k*
Newton iterate for the displacements, and K = % is
referred to as the stiffness matrix.

Rigid Body representation

The current configuration y of a rigid body under
displacement is expressed as

y=Rx+c¢ (4)

where z is a point on undisplaced body, R is an or-
thonormal rotational tensor and ¢ a translation vector.
R can be represented in terms of the Euler angles ¢, o
and # as

eocy — sgpsthel  —cosy — sgeped syt
R=| spc +chpsthel —spstp + cpeped  —cost | (5)
sepsf st cf

where ¢= cos and s = sin. Note that the entries of
the above matrix are bounded and that R is singular
for 6 = ¢ = ¢ = 0. Here the angles represent rotations
about a set of three orthogonal axes.

The equations of equilbrium for a rigid body are

Fe=F=F=M=M=M =0 (6)

where F is vector of net forces on the body and M is
the vector of net moments of the body about a selected
equilibrium point.

Mixed-Regime Algorithms

For a problem like the comb drive in figure (1), most
of the unknown displacements are associated with the
comb’s proof mass. Since the proof mass does not de-
form under most operating conditions, it is possible to
eliminate most of the unknowns by treating the proof
mass as a single rigid body. To make this point clear,
consider that a large fraction of the stiffness matrix in
(3) can be eliminated by treating the proof mass as a
rigid body, as shown in Figure (2). In order to exploit
this matrix reduction, it is necessary to assemble rigid
elements into a single rigid body and then determine the
rigid-elastic stifiness matrix efficiently. We describe our
approaches below.
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Figure 3: Rigid body assembly
Rigid Body Assembly

An implementation issue is the integration of indi-
vidual rigid bodies into a single rigid body whenever
they behave as a single unit. A necessary input to this
process is knowing which elements behave as rigid. In
this study,the criterion for checking the rigidity is the
elasticity modulus of the element which is set to a very
large value. Connection to a rigid body in 3-D requires
at least three noncollinear common nodes between the
rigid body and the element.

If K denotes the number of elements and the R de-
notes the set of the rigid elements then the assembly
algorithim is written as

Vi=lioK
if material (i) =coandi ¢ R
R=RU:
V j € neighbors (i)
if material (j) = co
R=RuUj
end
end
end
end

The 2d view of this process is shown in Figure 3
where at the end of this process only a single rigid body
will exist.

This depth first algorithim is most efficient for struc-
tures which have clustered rigid elements. For otherwise
a breadth first algorithm will be more efficient.

Finite element-Rigid Bonding

Figure 4 shows a 20 node finite element interface with
a rigid element. We note that a rigid element has a need
for interface nodes only for communicating the displace-
ment conditions at the interface. The stiffness matrix or
Jacobian for the elastic element shown will have com-
ponents due to the rigid body parameters. Also the

305



Elastic

Figure 4: FE-Rigid Interface

forces acting at A through H, on the rigid body will be
a function of nodes I through T

Representing the rigid body through Euler angles,
the equilibrium equation is

F(U.8,9,4,2R,yR.zR) =0 ' (7)
Assuming a convenient ordering of the Jacobian,
_ | Kee Ker

sl ®

The submatrix K is the elastic - elastic interaction
and a standard finite-element stiffness matrix, excluding
the entries due to the rigid-elastic interface nodes.

The submatrix Kgp is the elastic - rigid interaction.
We have for node variables z; (i = A..H) on the inter-
face

3_F__ OF 8xzy  OF Ozp “.+3_Faxg ©)
80 ~ Oxg 00 = Bzg 08 Ozg 86

. Here the chain rule has been applied. Also we know
Ti = 25(97 ¢:¢’IR3 y-R :R) (10)

from Equation 4.

The submatrix K gg, the rigid - elastic term, is present
because the equivalent nodal forces on the interface with
the rigid body are dependent on the variables associated
with nodes I..T of the elastic element as noted earlier
and these forces comtribute in the equilibrium of the
rigid body. For example the Moment A of the rigid
body is

M= L(Fh (11)

where L is an operator linear in F/, a interface nodal
force component. Then

oM oF!
T = U (12)

T
but %‘- is directly obtained from Kzf.

Figure 5: Summing of elemental forces on rigid body

The only forces in the rigid/elastic interface are the
equivalent nodal forces and it is important to realize
that these elastic force projections are such that the vir-
tual work on the element due to them equals the virtual
work due to element internal stresses and are therefore
pot an exactly equivalent force system to the interface
surface pressure exerted by the elastic element on the
rigid element.

The submatrix Kgg is the purely rigid-rigid interac-
tion term. This term arises from the positionai varia-
tion of the external pressure and point loads on the rigid
body with respect to its parameters. In case of pressure
forces such as that due to a fluid, the force is always nor-
mal to the surface of the body. As a result thereof the
pressure is geometry dependent and hence its contribu-
tion to J, specifically Kpz must be computed. Figure 5
shows the summing of individual pressure forces and
projecting them into the center of rotation of the rigid
body which also results in a moment.

It should be noted that Jr is not symmetric.

PRELIMINARY RESULTS

The comb drive accelerometer shown in Figure 1 was
tested using a mixed rigid/elastic formulation on a DEC
Alpha 433 MHz. The proof mass and fingers were taken
as rigid and the tethers were elastic. The material was
polysilicon. The proof mass has a dimension of 100 X
100 X 10 , the tethers 60 X 10 X 10 and the fingers 30
X 10 X 10. There is ro ground plane. The CPU tirne
required for the mechanical linear system solve for the
rigid/elastic case is 55.63 ms whereas it is 21,628.15 ms
for the full elastic simulation.

We then combined our mixed regime mechanical sim-
ulator with the precorrected FFT accelerated electro-
static solver [4] using the multilevel Newton method [3].
Figure 6 shows the nonlinear variation of the output
functional taken to be the maximum absolute displace-
ment, becoming increasingly stiff with increasing volt-
age, v on one of the supports of the structure. The cen-
tral structure and the other support were kept at 0 volts.
The CPU time for this coupled-domain mixed-regime
simulation is plotted as a function of applied voltage in
Figure 7. Note that computing the displacement for a
given voltage takes less than ten minutes.
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Figure 7: Rigid/Elastic Coupled Simulation
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CONCLUSIONS AND
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A mixed rigid/elastic formulation leads to a consider-
able saving in the mechanical solver computation time
requiring at the same time much less memory than a
full elastic analysis. With an automation of the rigid
element identification process, this leads to an efficient
coupled electromechanical analysis.
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