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ABSTRACT

One difficulty associated with computer simula-
tion of micromachined devices is that the devices
are typically geometrically complicated and innately
three-dimensional. For this reason, attempts to
exploit existing finite-element based tools for mi-
cromachined device simulation has proved difficult.
Instead, micromachine device designers have been
early adopters of the recently developed accelerated
boundary-element methods. In this short paper the
author will describe a little of the history of these
methods, primarily to point the interested reader to
the relevant literature.
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1 Introduction

Simulating a micromachined device, like the elec-
tromechanical resonator in Figure (1), is extremely
computationally challenging. One issue that makes
simulation difficult is that the resonator’s behavior
is governed by the coupling between electrostatic,
elastic and fluidic forces. The second issue is the
computational expensive of calculating the domain-
specific forces in such a geometrically complicated
example. Forces that require resolution of the geom-
etry’s exterior, such as electrostatic or fluidic forces,
are particularly expensive to compute.

When the equations that describe the exterior
problem are linear and space invariant, as is typi-
cally the case for electrostatic and magnetic forces
and can be the case for fluidic forces, an integral
formulation of the problem will exist. Such formu-
lations use Greens functions to eliminate the prob-
lem’s exterior and typically involve only quantities
of the problem surface. Such a formulation seems
ideal when computing traction forces or electro-
static pressures on surfaces, but the integral for-
mulation generates a particular numerical difficulty.
Discretized integral equations generate dense matri-
ces which are expensive to form and solve.

For example, consider the first-kind electrostat-
ics problem,
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Figure 1: A Comb Resonator Example

where z is a point on the surface, ¢(z) is the
known conductor surface potential. The simplest
discretization of (1) is to divide the surfaces into n
flat panels over which the charge density is assumed
constant. If the collocation points, the x;’s, are
selected at the centroids of each panel, then the
discretized system is

Pqg=1V (2)

where ¢ is the n-length vector of panel charges, ¥

is the n-length vector of known centroid potentials,
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2 The Fast Solver Approach

If direct factorization is used to solve (2), then
the memory required to store the matrix will grow
like n? and the matrix solve time will increase like
n3. If instead, a preconditioned Krylov-subspace
method like GMRES [1] is used to solve (2), then it
is possible to reduce the solve time to order n? but
the memory requirement will not decrease.

In order to develop algorithms that use mem-
ory and time that grows more slowly with problem
size, 1t 1s essential not to form the matrix explic-
itly. Instead, one can exploit the fact that Krylov-
subspace methods for solving systems of equations
only require matrix-vector products and not an ex-
plicit representation of the matrix. For example,
note that for P in (2), computing Pgq is equivalent
to computing n potentials due to n sources and this
can be accomplished in nearly order n operations [2],
[4],[3]. Several researcher simultaneously observed
the powerful combination of BEM, Krylov-subspace



methods, and fast matrix-vector products [5]-[7].
Such methods are now referred to as accelerated
BEM or, more pejoratively, as fast solvers.

Perhaps the first practical use of accelerated
BEM was based on combining fast multipole algo-
rithms for charged particle computations with low-
order BEM to compute 3-D capacitance and elec-
trostatic forces [8],[9]. Currently, almost all the
programs for electrostatic force computation for mi-
crosensors use accelerated boundary-element meth-
ods. Extensions have appeared, such as comput-
ing inductance [13] or fluid drag [14], as well as
algorithm improvements such as better adaptivity,
higher-order elements and improved efficiency for

high accuracy [11],[10].

3 General Green’s functions

Most of the mature accelerated BEM codes are
for % kernels and use multipole expansions, be-
cause they were derived from the idea that comput-
ing Pq is equivalent to computing potentials from
charges. Instead, it is possible to develop tech-
niques which are Greens function independent, and
there have been a variety of such approaches. There
is the panel clustering idea [6], a multigrid style
method [15], a technique based on the singular-value
decomposition [17], and approaches based on using
wavelet-like methods [16], [18],[19].

For problems with oscillatory kernels, such as
acoustic or electromagnetic scattering, the above
approaches fail because they all exploit multiresolu-
tion. That is, they all count on using less informa-
tion to represent distant interactions. For the oscil-
latory kernel case, one can not count on multiresolu-
tion. The difficulty is, roughly, that phase informa-
tion must be maintained no matter how distant the
interactions. For very high frequency applications,
there are specialized multipole algorithms [20]-][22],
but these techniques collapse numerically at low fre-
quencies. The only techniques that work for general
kernels are based on projecting to a uniform grid
and using the FFT [4], [23],[24]. FFT-based tech-
niques, unfortunately, have efficiency problems for
inhomogenous geometries.

4 Conclusions

In this brief paper the author described some
of the history of fast methods for solving integral
equations. The author would like to thank the
many students who have developed codes using fast
solvers including Keith Nabors, Joel Phillips, Matt
Kamon, Michael Chou, Narayan Aluru, Wenjing
Ye, Joe Kanapka and Xin Wang. This work was
supported by the DARPA composite CAD program,
the DARPA muri program, and grants from the
Semiconductor Research Corporation.
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