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1 ABSTRACT

This paper presents a new approach to computing
1=r singularities on curved panels. By using carefully
chosen mapping techniques, a curved panel with curved
edges is mapped to a 
at panel with straight edges. An-
alytical formulas for 
at panel integrals are then used
to give approximate curved panel integration solution.
For those curved panels with reasonably large curvatures
and smooth edges, this method can eÆciently achieve
excellent accuracy(10�5% error).
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2 INTRODUCTION

The geometric complexity of most micromachined
devices makes full three-dimensional simulation of an
entire device a computationally challenging problem, but
much progress has been made over the last decade. Fast
boundary-element methods(BEM), based on multipole
or precorrected-FFT accelerated iterative algorithms
[1,2,3], has made certainly 3-D analyses routine. For ex-
ample, electrostatic analysis of an entire comb drive can
now be performed in minutes[4] rather the days. The
enormous computational bene�t of accelerated BEM has
renewed interest in extending and improving fast BEM
methods. In this paper we address a problem common
to many BEM methods, that of robustly computing sur-
face integrals of Greens functions with 1

r
type singular-

ities. The existing procedures either force a piece-wise

at geometric approximation or break down for closely
spaced surfaces.

Electrostatically deformed membranes and beams can
form pairs of curved structures with a very small gap be-
tween the structures. If BEM is used to compute elec-
trostatic forces in these structures, then it is necessary
to compute

R
P

kx�x0kdS
0 over sections of the curved sur-

face, where the sections are referred to as panels. Here
P is a polynomial in x0 and the evaluation point x is very
close to the surface. Adaptive cubature methods can be
applied to this near singular integral [5], but such meth-
ods use nested subdivision that can become extremely
ineÆcient as x approaches the surface. Also, the struc-
ture can be approximated as piece-wise 
at and analytic

integration are used[6,7], but then many 
at panels are
needed to achieve high accuracy. In this paper we intro-
duce an eÆcient mapping method which can be used to
evaluate both the singular and near singular integrals.

3 FLAT PANEL INTEGRATION

In this part, we only consider 
at panel integration

in the form of
R

p(x;y;z)
r2n+1

ds, n = 0; 1; ::: . Here r is the
distance between evaluation points and panel, p is a
polynomial of x, y and z. First, a local coordinate sys-
tem (�; �; �) is derived so that the panel is put in the
� � � coordinate plane. Major computations are �n-
ished in the local coordinate system and solutions are
then transferred back to the global system. In order to
make computation cheaper, two recurrence schemes are
used instead of direct integration. Please refer to [7,8]
for details.

4 CURVED PANEL INTEGRATION

In this paper, we consider the example of computingR
1
r
ds over a curved panel, though other functions can

be integrated in a similar way. To begin, note that any
geometrically well de�ned curved panel with large cur-
vatures and smooth edges can be accurately mapped to

at panel with straight edges though the mapping func-
tion may be complicated. We consider this approach
because there are formulas for analytically integrating
1=r on a 
at panel [6,7].

For any curved triangular panel, an obvious reference

at panel is the 
at panel de�ned by the three corners
of a curved triangular panel. Then integration over the
curved panel may be expressed as:Z
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1
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Z
flat

1
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�
dsflat
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flat

P (�; �)

ref
dsflat (1)

where ref � jXeval �Xflatj and rec � jXeval �Xcurvej,
Xeval is the position of the evaluation point, Xcurve is
the position of a point on the curved panel, Xflat is
the corresponding point on the 
at panel, J is the Ja-
cobian matrix, and P (�; �) is a polynomial approximate



for
ref
rec

jJ j. If the only singularity is the 1
ref

term, it will

be easy to �nd a polynomial P (�; �) that accurately ap-
proximates

ref
rec

jJ j. In addition, we can then use the for-
mulas for 1=r integrals over 
at panels. So, the ultimate
goal is to �nd a 
at reference panel that makes

ref
rec

jJ j
as smooth as possible. In Fig.1, a tangent panel to the
curved surface is shown. A tangent panel that touches
the curved surface at a point closest to the evaluation
point on the panel is an ideal choice. For the singular
case, the evaluation point is on the surface; for the near-
singular case, the evaluation point is very close to the
surface. In Fig.2, the de�nition of the singular and near
singular case is shown pictorially. We de�ne the tangent
point as the point on the surface closest to the evalua-
tion point. For the tangent panel that passes through
the tangent point, the following limits exist when point
on the panel approaches the tangent point,

lim
point!tangent point

ref
rec

= 1 (2)

Note jJ j is smooth function, so the ideal mapping we
are looking for is a mapping between curved panel and a
tangent panel which coincides at the tangent point. The
tangent panel is named the ideal reference 
at panel.

The second problem is how to �nd the polynomial
P (�; �). For curved panel integration, it is suggested
that the reference panel be used to set up the local co-
ordinate system. The mapping between curved panel
and 
at panel can be easily de�ned as x = x(�; �),
y = y(�; �), and z = z(�; �). Then the determinant
of Jacobian matrix is
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In the global system, the evaluation point is (X 0; Y 0; Z 0);
the point on the curved panel is (x(�; �); y(�; �); z(�; �)).
In the local system, the evaluation point is (X;Y; Z);
the point on the 
at panel is (�; �; 0). P (�; �) can be
analytically expanded and approximated to �nite orders
if the curved surface has an analytical expression. Here
we suggest using a cubature method. This method is to
�nd cubature points (�i; �i) on the reference panel and
its corresponding

ref
rec

jJ j, then calculate coeÆcients of
certain polynomial by forcing the polynomial to match
ref
rec

jJ j at those cubature points. If more cubature points
are selected, then a least square method can be used to
compute coeÆcients of the polynomial.

More precisely, assume

P (�; �) = c0;0+c1;0�+c0;1�+c1;1�� : : : : : : cm;n�
m�n (4)

Then:
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(5)
Sometimes it is diÆcult to �nd the tangent panel an-

alytically. A short Newton iteration can be used to �nd
approximate tangent panel. In order to guarantee the
convergence of Newton iteration, an initial value should
be close to the tangent point. Mapping is also an impor-
tant step; the curved surface must be uniquely mapped
to the 
at surface. Easily made mistakes are surface
overlaps (part of the curved surface can be mapped to
two or more 
at panels) and holes (part of the curved
surface can not be mapped to any 
at panels).

5 CURVED PANEL ALGORITHM

The curved panel algorithm can be summarized as

1) Calculate tangent point and tangent 
at panel
2) Find a mapping between curved panel and reference

panel.
3) Compute cubature points.
4) Curved panel integration

4.1) Compute
R

flat

1
r2n+1

ds;
R

flat

�
r2n+1

ds; :::
R

flat

�m�n

r2n+1
ds

analytically.
4.2) Find P (�; �) = c0;0 + c1;0� + c0;1� + : : : : : :
+cm;n�

m�n using (5)

4.3) Compute
R

flat

P (�;�)
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ds = c0;0
R

flat

1
r2n+1

ds

+ c1;0
R
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This method is very accurate if the value of
ref
rec

jJ j
is smooth enough.

A simple curved triangle panel that is part of a sphere
is used to test the accuracy of

R
curve

1
r
ds. The radius of

the panel varies from 2 to 7.5, distance between corners
are 1, 1 and

p
2. Note that the larger the radius, the

\
atter" the panel. First, the singular case (evaluation
point is the centroid of the curved panel) and nearby
case (evaluation point is not too close to the surface) are
tested. Fig.3 and Fig.4 show that very high accuracy are
achieved with low order polynomials P (�; �).

Second, the near-singular performance of the map-
ping method is tested. Evaluation points are chosen
along the line that connects the center of the sphere



and centroid of the 
at panel de�ned by the three cor-
ners. Fig.5 shows that the accuracy decreases and then
increases. This is caused by the singularity. Fig.6 shows
the value of

ref
rec

over the 
at panel. The value is one at

the tangent point, but a close look at
ref
rec

reveals a peak
that can not be easily �tted with a polynomial. Our
original mapping is a simple one shown in Fig.7, Fig.6
shows that the value of

ref
rec

drops rapidly and then in-
creases when point moves further away from tangent
point. This can not be easily �tted to polynomial. Of
course, the accuracy of the mapping method will not be
too bad as

ref
rec

is smooth over the panel, but it won't be
very good unless a large number of cubature points and
high order polynomial are used. In the singular case,

ref
rec

strictly increases or decreases when a point on the panel
moves farther away from the singularity and this makes
low-order polynomial �tting very accurate. When the
evaluation point is far away from the panel,

ref
rec

is also
smooth enough to be accurately �tted to a polynomial.
The diÆculty only happens when evaluation point is not
far from the panel and not very close to the panel. Fig.5
shows that using large number of cubature points and
high order polynomial can achieve high accuracy but at
high cost.

The hat-shape of
ref
rec

at near singular area re
ects a
problem in the mapping method. Modifying the map-
ping method can solve the problem. The method used
here is to keep the tangent point �xed, and meanwhile
scaling (enlarging or shrinking) the reference panel. Fig.7
shows that enlarging the reference panel increase the
value of

ref
rec

and makes it smoother. Fig.8 shows the
modi�ed mapping can get rid of the hat-shape shown in
Fig.6. Fig.9 shows that the scaling modi�cation signi�-
cantly increases accuracy.

6 SPHERE EXAMPLE

To demonstrate the advantage of using curved pan-
els, consider computing the capacitance of a sphere as
the charge distribution is uniform. Table 1 compares
the capacitance computed using a 
at panel geometric
approximation with using curved panels and our new
integration method. As is clear from the table, curved
panels yields �fty times the accuracy with a tenth of the
panels.

Number of Panels Error
48 Curvilinear Panel 0.0127%

48 Flat Panel 8.659%
768 Flat Panel 0.679%

Table 1: An Example, Capacitance of a Sphere

7 CONCLUSIONS AND
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In this paper we described a new mapping method
that map curved panels to 
at panels, integrations of
singular kernels are then computed on the 
at panels.
We also introduce a cubature method to compute the co-
eÆcients of polynomials. Results of the singular, nearby
and near-singular integration cases are given to show the
eÆciency of this powerful method. With excellent accu-
racy, this method can signi�cantly reduce the number
of panels used in discretization.
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Figure 3: Singular Case Accuracy
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Figure 4: Nearby Case Accuracy
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Figure 5: Near Singular Case Accuracy
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Figure 8: Hat-shape disappears
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Figure 9: No-hat approach increases accuracy


