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ABSTRACT

A new surface integral formulation and dis-
cretization approach for computing the magneto-
quasistatic impedance of general conductors is de-
scribed. The key advantage of the formulation is
that it correctly predicts the resistance and induc-
tance over the entire frequency. In addition, since
the formulation is directly derived from Maxwell's
equations under the MQS assumption, it does not
require a-priori information about skin depth nor
does it include assumptions about proximity e�ects.
Computational results for a ring and a wire are pre-
sented to verify the formulation.
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1 Introduction

Many approaches to impedance extraction ex-
ploit the close connection between circuit analysis,
which relies primarily on current conservation, and
the electromagnetic analysis, in which there are �eld
quantities such as potentials and current densities.
In such formulations, current distributions are rep-
resented directly by discretizing the volume of the
conductor [1], but this volume discretization makes
it di�cult to analyze complicated geometries over
a wide range of frequencies. In complicated ge-
ometries it is cumbersome to generate the volume
meshes in the conductors, and in addition, the mesh
must be adapted as the frequency rises to model the
skin e�ect. In order to address this problem, very ef-
fective techniques based on surface impedances have
been developed [2], [3], but these approaches make
some assumptions about proximity e�ects.

In this paper we describe a surface integral for-
mulation and discretization approach to computing
the magnetoquasistatic impedance of general con-
ductors. The key advantage of this new formulation
is that it correctly predicts the frequency dependent
resistance and inductance using a single formula-

tion. In addition, since the formulation is directly
derived from Maxwell's equations under the MQS
assumption, it does not require a-priori information
about surface impedances nor does it include as-
sumptions about proximity e�ects. In the next sec-

tion, the integral formulation and descretization for
thin conductors is derived. In section 3, we present
some preliminary results for a ring and a single wire
example and compare to the publicly available Fas-
tHenry program. Finally, conclusions are given in
Section 4.

2 Surface formulation

There is a similarity between our surface formu-
lation and the nodal analysis approach to computing
the impedance of a complicated circuit. To compute
impedances using nodal analysis, two basic relation-
ships are necessary. First, there should be a consti-
tutive relationship between the potential drop and
the current; secondly, there should be current con-
servation. The surface formulation below has cor-
responding relationships, but the approach also re-
quires a relation between the surface elelctric �eld
and its normal derivative. This second equation is
necessary because it ensures that the surface quan-
tity is a complete representation of the volume.

2.1 Equation System

There are two integral and one di�erential equa-
tion our surface formulation. They are described
below.

2.1.1 First dyadic surface integral equation

Assume a conductor has surface S and volume V .
Under the magnetoquasistatics(MQS) assumption,
E in time-harmonics is governed by the dyadic

Helmhotz equation over the whole volume of V :

r2 �E � i!�� �E = 0 (1)

Applying Green's Theorem to 1 in the interior of
S, a dyadic surface integral equation can be derived:Z
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x and y are on S, and the singularity inR
S
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�E(y)dy is not removed.



2.1.2 Second dyadic surface integral equa-

tion

Another way of writing the dyadic Helmhotz equa-
tion for E in time-harmonics under magnetoqua-
sistatics is:

r2 �E = i!� �J (3)

Applying Green's Theorem to 3 in the interior
of S results in an integral equation of the form:
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With �r = E + i!A and �A(x) =R
V
�G0(x; y) �J(y)dy, the integral equation above can

be written as:
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Again, the singularity in the integration is not
removed.

2.1.3 Current conservation

The equations derived above are only two equations
for three variables E, @E

@n
and  , and another

equation is necessary. There are two approaches
that might yield the equation needed. One is to
enforce r2 = 0, another is to enforce current
conservation (r � E = 0). For a closed loop, both
approaches are equivalent, but for an open loop,
r2 = 0 is no longer true, while r � E = 0 still
holds. Therefore, current conservation is enforced
for all cases.

2.1.4 Boundary conditions

Two boundary conditions are used for the conductor
contacts. The potential at the contacts is given, and
it is assumed that there is no tangential current ow
at the contacts. As the electric �eld is divergence
free, @En

@n
must be zero at the contacts.

2.2 Thin Conductor Analysis

To investigate the above formulation for thin
structures like the ring in Figure 1, the current is
assumed to follow the path of the conductor.

Figure 1: A discretized ring

2.2.1 Discretization

To discretize the problem, the surface is decomposed
into at panels. The panels at the contacts of
the conductor where potential is applied are called
contact panels, while the other panels are called
non-contact panels. On each panel, E is assumed
to be nonzero only in the direction of the length of
the conductor, which is denoted by a unit vector f .
For each panel, there are two unknowns Ef = ~E � f

and
@Ef

@n
= @ ~E

@n
� f .

To represent rf of non-contact panels using
a �nite di�erence scheme, potential nodes are put
at the midpoint of the edges of non-contact panels
orthogonal to the direction of current, see Figure 2.

2.2.2 Linear system

Using a constant-strength collocation scheme, the
two surface integral equations 2 and 4 take the
form:
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where I is identity matrix and xi is the center of the
ith panel.

To form the linear system of equations, equation
5 is applied to all panels. Equation 6, however, is
only applied to non-contact panels because for the
contact panels,

@Ef

@n
= 0. This boundary condition

results from the observation that the electric �eld is
always divergence free.



The gradient of the potential, needed in 6, is
derived from node potentials. As shown in Figure 2,
two potential nodes N1 and N2 are placed at the
midpoint of the edges of panel 2 orthogonal to the
direction of current, then

rf � ( (N2) �  (N1))=L

where L is the distance between the two potential
nodes.
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N1 N2 ...
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Figure 2: The position of nodes with unknown
potential
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Figure 3: Current conservation in 1-D form

In order to enforce the current conservation
equation, consider the diagram shown in Figure 3.
The two areas enclosed by the dashed thick lines
are the top of the thin boxes around N1 and N2,
the nodes with unknown potential. The normal
current is zero under the MQS assumption, and the
tangential current orthogonal to the wire direction,
that is orthogonal to f , is also zero under the thin
conductor assumption. Therefore, Ef has to be the
same through the current path,

Ef (x1) = Ef (x2) = Ef (x3): (7)

For every node on the side, there is one surface
current conservation equation. There are exactly
the same number of surface current conservation
equation as the number of nodes with unknown
potential.

The three set of equations, 5, 6 and 7, and the
boundary condition for

@Ef

@n
at the contacts, results

in a nonsingular system for determining the node
potentials and the panel currents.

2.2.3 Current computation

Once the linear system is solved, the current ow-
ing into the conductor can be computed. At low
frequency, current can be computed by summing
up the current owing into the contact panels. At
high frequency, a more accurate approach is to useR
l
~H(x)dx instead, where l is a closed line encir-

cling the cross-section of the conductor. Using rela-
tionship between E and H, the current is actually

R
l

@Ef (x)

@nx
dx=(i!�). When the skin depth is about

one fourth of that of the diameter of the cross sec-
tion, the current is computed using the magnetic
approach. Finally, the impedance is the reciprocal
of the current due to a unit potential source, and
the resistance and inductance are computed from
the impedance.

3 Numerical experiments

To test this new surface formulation for long thin
structure, we use the ring in Figure 1 and com-
pared the result of surface formulation to both an-
alytical result at low frequency and results from
the FastHenry simulation program. FastHenry com-
bines multipole acceleration with a PEEC-like vol-
ume method [6]. As shown in Figure 4 , both sim-
ulation methods match the analytic inductance for
the low frequency range(The low frequency analytic
inductance is 0.04889 nH, computed with formula
from [8]), and both show the drop in inductance due
to the skin e�ect at high frequency. However, the
convergence of inductance is more frequency depen-
dent for surface method than for FastHency. As can
be seen from the curves for 272 panels and 848 pan-
els in Figure 4, the convergence is slowest around
10 GHz, when skin depth is close to the diameter of
the cross section.

When examining the resistance, shown in (Fig-
ure 5), the two methods behave very di�erently. The
surface formulation captures the frequency depen-
dence of the resistance, due to the skin e�ect, with-
out changing the discretization (848 surface panels
were used). For FastHenry, however, the resistance
stops increasing at a frequency that is discretization
dependent. Figure 5 shows the higher frequency re-
sistance computed with FastHenry change dramat-
ically for 1440, 3840, and 15360 �laments.
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Figure 4: Inductance for the ring example

Another example used is a straight conductor

wire which is 8 um long, 1 um wide and 1 um
thick. The surface formulation is using 160 panels
over the whole frequency range, while FastHenry is
using 128, 512 and 2048 �laments. The observation
is similar to the ring example. As shown in Fig-
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Figure 5: Resistance for the ring example

ure 6, two method shows similar inductance over
the whole range, and both capture the inductance
drop due to the skin e�ect; For resistance result as
shown in Figure 7, surface formulation still captures
the frequency dependency without changing the dis-
cretization while the high frequency resistance com-
puted with FastHenry changes dramatically for 128,
512 and 2048 �laments.

10
0

10
5

10
10

10
15

10
20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

f (Hz) 

L 
( 

nH
) 

Surface 160
FH 2048    
FH 512     
FH 128     

Figure 6: Inductance for the wire example
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Figure 7: Resistance for the wire example

4 conclusions and acknowledgements

In this paper a new surface integral formula-
tion and discretization approach for computing the
magnetoquasistatic impedance of general conduc-
tors was described. The key advantage of the formu-
lation is that it correctly predicts impedances over
the entire frequency range. Computational results
for a ring and a wire a were presented to verify that

the formulation can accurately predict the frequency
dependence of resistance and inductance over the
entire frequency range without modifying the dis-
cretization.
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