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Abstract

Since the �rst papers on asymptotic waveform

evaluation (AWE), Pad�e-based reduced order models

have become standard for improving coupled circuit-

interconnect simulation e�ciency. Such models can

be accurately computed using bi-orthogonalization al-

gorithms like Pad�e via Lanczos (PVL), but the re-

sulting Pad�e approximates can still be unstable even

when generated from stable RLC circuits. For certain

classes of RC circuits it has been shown that congru-

ence transforms, like the Arnoldi algorithm, can gen-

erate guaranteed stable and passive reduced-order mod-

els. In this paper we present a computationally e�-

cient model-order reduction technique, the coordinate-

transformed Arnoldi algorithm, and show that this

method generates arbitrarily accurate and guaranteed

stable reduced-order models for RLC circuits. Exam-

ples are presented which demonstrates the enhanced

stability and e�ciency of the new method.

1 Introduction

The dense three-dimensional packaging used in

compact electronic systems often produce magnetic

interactions which interfere with system performance.

Such e�ects are di�cult to simulate because they oc-

cur only as a result of an interaction between the �eld

distribution in a complicated geometry of conductors,

and the circuitry connected to those conductors. For

structures small compared to a wavelength, electro-

magnetic interactions between conductors can be rep-

resented arbitrarily accurately using a densely coupled

resistor, inductor, and capacitor (RLC) network [1].

Although it is possible to simulate coupled circuit-

interconnect problems by including this densely cou-
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pled RLC network with the transistor models in a cir-

cuit simulator, this can be a very ine�cient approach.

A standard way to improve the e�ciency of coupled

circuit-interconnect simulation is to use Pad�e-based

reduced order models [2, 3, 4, 5, 6]. Accurate com-

putation of such models can be accomplished using

bi-orthogonalization algorithms like Pad�e via Lanczos

(PVL) [7], but the resulting Pad�e approximates can

still be unstable even when generated from stable RLC

circuits. It has been shown that, for certain classes of

RC circuits, congruence transforms, like the Arnoldi

algorithm, can generate guaranteed stable and passive

reduced-order models [8]. In this paper we present a

computationally e�cient model-order reduction tech-

nique, the coordinate-transformed Arnoldi algorithm,

and use a congruence argument similar to the one in [8]

to show that our method generates arbitrarily accu-

rate and guaranteed stable reduced-order models for

general RLC circuits.

In the next section we brie
y describe background

on RLC circuit formulation, model-order reduction,

Pad�e approximation, and Arnoldi methods. Then

in Section 3, we present a guaranteed stability the-

ory comprising two steps: a coordinate transforma-

tion requiring the computation of a matrix square

root and an Arnoldi iteration. In Section 4, we show

that the matrix square-root coordinate transformation

can be performed implicitly as part of a coordinate-

transformed Arnoldi algorithm, and that therefore it

is not necessary to compute the matrix square-root.

The results presented in section 5 include several ex-

amples. A simple RC circuit is examined to show that

the generated Pad�e approximate is unstable but the

coordinate-transformed Arnoldi algorithm produces a

stable reduced-order model. Then, results are pre-

sented comparing the accuracy of the model-order

reduction methods on a low-noise ampli�er and an

equivalent circuit for a three-dimensional electromag-

netic problem modeled via PEEC [1]. Finally, in sec-
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tion 6, we present conclusions and acknowledgments.

2 Background

2.1 Formulation

If the modi�ed nodal analysis approach is used to

generate a system of equations for a network consist-

ing of coupled inductors, capacitors, and resistors, the

resulting N -node system has the form�
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where v 2 R
N is the vector of N node voltages,

i 2 RM is the vector of M inductor currents, is 2 R
N

is the vector of source currents, C;G 2 RN�N are the

symmetric nodal capacitance and conductor matrices,

respectively, L 2 RM�M is the symmetric branch in-

ductance matrix, and B 2 RN�M is the incidence

matrix associated with the inductor currents.

For the SISO (single transfer impedance) case, we

can simplify the above system using the notation

L
�

x = �R x + ej u

y = ek
Tx:

(2)

Here, ej; ek;2 R
N+M are the j-th and k-th unit vec-

tors associated with computing the transfer imped-

ance Zjk from the j-th branch to the k-th node, and

x �

�
v

i

�
L �

�
C O

O L

�
R �

�
G B

�B
T

O

�
:

(3)

Below we will use the more general notation

A
�

x = x + bu

y = cTx:
(4)

where in our case A = �R
�1
L 2 R

n�n, b =

�R�1ej , c = ek and n = N +M .

From (4), the transfer impedance is given by

Zjk(s) =
y(s)

u(s)
= �cT (I � sA)

�1
b (5)

where s is the Laplace transform variable.

A reduced-order model for (4) is the SISO system

Aq

�

xq = xq + bqu

~y = cTq xq
(6)

where xq ; bq; cq 2 Rq, Aq 2 Rq�q and q is presum-

ably much smaller than n. The model-order reduc-

tion problem is then �nding the smallest Aq, bq and

cq such that

~Zjk(s) =
~y(s)

u(s)
= �cq

T (I � sAq)
�1
bq (7)

approximates Zjk =
y(s)

u(s)
with su�cient accuracy.

2.2 Pad�e Approximations

The reason for the popularity of Pad�e approximates

in circuit simulation is that it provides a systematic

method for enforcing successively more accurate rep-

resentations of the approach to steady-state. More for-

mally, if the transfer impedance Zjk (5) is expanded

in a McLaurin series,

Zjk(s) = �cT (I � sA)
�1
b = �

1X
k=0

mks
k: (8)

where

mk = cTAkb (9)

is the kth moment of the transfer function, then a

(diagonal) Pad�e approximation of qth order is de�ned

as the rational function

GP
q (s) =

bq�1s
q�1 + � � �+ b1s + b0

aqsq + aq�1sq�1 + � � �+ a1s + 1
(10)

whose coe�cients are selected to match the �rst 2q

moments of the transfer function (5).

Low order Pad�e approximates can be computed us-

ing direct evaluation of the moments, followed by a

moment-matching procedure [9, 2]. In order to accu-

rately compute higher order Pad�e approximates, it is

necessary to use successive bi-orthogonalization com-

bined with lookahead, as in the recent nonsymmetric

Lanczos algorithms [10, 11]. Although nonsymmetric

Lanczos methods plus lookahead can be used to gener-

ate Pad�e approximates of arbitrarily high order, there

is no guarantee that a given approximate will be sta-

ble. It is therefore essential to postprocess the Pad�e

approximate before using it in a circuit simulation pro-

gram.

2.3 Arnoldi-based Model Order Reduc-
tion

Pad�e approximates are in one sense optimal: they

match as many moments as there are free coe�cients

in the reduced-order transfer function. It is possible

to trade some of this optimality to gain guaranteed

stability, at least for the case of RLC circuits with



positive elements, using a model-order reduction algo-

rithm based on the Arnoldi process. The Arnoldi ap-

proach is similar to Lanczos-style algorithms in that it

creates an orthonormal basis for the Krylov subspace

Kk(A; b) = spanfb;Ab;A2b; � � � ;Ak�1bg. And just

like the Lanczos process, the Arnoldi algorithm is a

better conditioned process than direct evaluation of

the moments because it generates an orthogonal set

of vectors which span Akb; k = 0; : : : ; 2q� 1.

After q steps, the Arnoldi algorithm returns a set

of q orthonormal vectors, as the columns of the matrix

Vq 2 R
n�q, and a q� q upper Hessenberg (tridiagonal

plus upper triangular) matrix Hq whose entries are

the scalars hi;j generated by the Arnoldi algorithm.

These two matrices satisfy the following relationship:

A Vq = Vq Hq + hq+1;q vq+1 e
T
q (11)

where eq is the q
th unit vector inRq. From (11), it can

easily be seen that after q steps of an Arnoldi process,

for k < q,

Ak b = kbk2 A
k Vq e1 = kbk2 Vq H

k
q e1: (12)

With this relation, the moments (9) can be related to

Hq by

mk = cT Ak b = kbk2 c
T Vq| {z }

cTq

Hk
q|{z}

Ak

q

e1|{z}
bq

(13)

and so, by analogy with (9), the qth order Arnoldi-

based approximation to Zij can be written as

GA
q (s) = kbk2 c

T Vq (I � sHq)
�1

e1 (14)

corresponding to the state-space realizationAq =Hq ,

bq = e1, and cq = kbk2 V
T

q c.

3 Guaranteed Stability Theorems

In this section we use a matrix congruence argu-

ment similar to that in [8], where it was applied to RC

circuits, to yield a result which guarantees the stabil-

ity of the Arnoldi-generated reduced-order models for

RLC circuits. The stability result given below requires

that the Arnoldi algorithm be applied to a coordinate-

transformed version of (1) using the square roots of

the L and C matrices. In the next section we will

show that the coordinate-transformation can be e�-

ciently \folded" into the Arnoldi algorithm and that

no matrix square-roots need be computed. We �rst

give some basic lemmas, then prove the main theorem

in a general setting, and �nally we show that the the-

orem applies to systems generated from RLC circuits.

3.1 De�nitions and Basic Lemmas.

Throughout this section it is assumed that A 2

R
n�n and that the Arnoldi process has been used to

construct an Hessenberg matrixHq 2 R
q�q such that

V T
q AVq =Hq; (15)

where the matrix Vq 2 R
n�q has q orthonormal

columns.

We will use the following de�nitions:

De�nition 1 The real matrix A is said to be negative

semide�nite if

xTAx � 0

for any non-zero vector x.

Note that our de�nition does not make the typical

assumption [12] that A is symmetric.

De�nition 2 The real matrix A is said to be

(strictly) stable if all its eigenvalues have (negative)

nonpositive real parts.

Since we have not assumed symmetry in De�nition 1,

the next lemma is not entirely obvious.

Lemma 3 If the real matrix A is negative semide�-

nite then A is stable. Moreover, if B is any symmetric

matrix, then BAB is negative semide�nite. Finally,

if the real matrix A is nonsingular negative semide�-

nite then so is its inverse A�1.

For a proof of the above lemma, see [13].

3.2 Main Result

Using the above de�nitions and lemmas,

Theorem 4 If the real matrix A is negative semi-

de�nite then the matrix Hq generated by the Arnoldi

process is stable.

Proof. Let x be an arbitrary non-zero vector in Rq.

Then we have

xTHqx = xTV T
q AVqx = (Vqx)

T
A (Vqx) � 0;

where the �rst equality results from the de�nition

of Hq (see Equation 15) and the inequality results

from the fact that A is assumed negative semide�-

nite. Lemma 3 allows us to conclude that since Hq is

negative semide�nite, it is stable.



Given the result in Theorem (4), we can insure that

the Arnoldi algorithm will produce a stable reduced-

order model if the associated system matrix A is neg-

ative semide�nite. Although the matrices L and R,

generated by modi�ed nodal analysis of an RLC cir-

cuit with positive elements, are in general positive

semide�nite, the matrix A = �R�1
L is not necessar-

ily negative semide�nite. It is well known, however,

that the property of negative or positive de�niteness

of a matrix depends on the basis chosen for the state

space Rn. A natural question then is whether there is

a change of coordinates in the state space such that

the resulting system matrix is negative de�nite.

The answer to the above question is indeed a�rma-

tive. Consider the change of variable 1

~x = L
1

2x (16)

where L
1

2 is the unique symmetric, positive de�nite

square root of the symmetric, positive de�nite matrix

L. From this it follows that (2) can be written as

� (L
1

2R
�1
L

1

2 )
�

~x= ~x �L
1

2R
�1eju (17)

and that the output equation becomes

y = eTkL
�

1

2 ~x: (18)

The modi�ed system matrix is now given by

~A = �L
1

2R
�1
L

1

2 (19)

while the input and output vectors are given by

~b = �L
1

2 b = �L
1

2R
�1
ej ~cT = cTL

�
1

2 = eTkL
�

1

2 :

(20)

As can be easily veri�ed, moments are invariant under

a change of coordinates in the state space. Therefore,

a reduced order model that matches the moments of

(19) and (20) will also match the moments of the orig-

inal system.

The coordinate change leads us to the main circuit-

speci�c result.

Theorem 5 If the matrix �L
1

2R
�1
L

1

2 is gener-

ated from modi�ed nodal analysis of an RLC circuit

with positive elements, then the Hq generated by the

Arnoldi process applied to ~A and ~b is stable.

Proof. As a consequence of the result of Theorem

4, it is only necessary to show that �L
1

2R
�1
L

1

2 is

negative semide�nite. To prove this result, we begin

1From now on, we assume that both R and L are

nonsingular.

by demonstrating that �R is negative semide�nite.

Using R's de�nition in (3),

xTRx =

�
v

i

�T �
G B

�BT O

� �
v

i

�
: (21)

Carrying out the matrix multiplication reveals

� xTRx = �vTGv � 0 (22)

because the G matrix is positive de�nite, or more in-

tuitively, the power dissipated by a network of positive

resistors is always positive.

Combining (22) with Lemma 3 implies that �R�1

is negative semide�nite. It then also follows from

Lemma 3 that �L
1

2R
�1
L

1

2 is negative semide�nite,

proving the theorem.

Theorem 5 holds only for a reduced-order matrix

Hq obtained using the Arnoldi procedure. We will

show in Section 5 that the Lanczos algorithm can in-

deed produce an unstable reduced-order model even

for a circuit which generates a symmetric negative def-

inite matrix.

4 Coordinate-Transformed Arnoldi

Algorithm

In order to obtain the stable transfer function cor-

responding to the system in (19) and (20), the Arnoldi

algorithmmust be applied to the matrix�L
1

2R
�1
L

1

2

and the input vector �L
1

2R
�1ej. This might lead to

the belief that the computation of L
1

2 , potentially a

costly operation, is needed. Such computation can

be altogether avoided by using a modi�ed Arnoldi al-

gorithm which generates the Hq associated with the

transformed system matrix and input vector, but does

not require explicit computation of L
1

2 .

This modi�ed Arnoldi algorithm uses a \hiding the

square-root" trick commonly used when precondition-

ing Conjugate-Gradient schemes [14]. The key idea is

that most of the operations involve inner products of

the form �
L

1

2u

�T
L

1

2y: (23)

If L is symmetric, which is the case for RLC cir-

cuits, then (23) can be rewritten as uTLy; which no

longer requires the square root. The presence of the

matrix L can be construed as endowing Rn with an

induced dot product, hx;yiL = yTLx, thus lead-

ing to what we term a modi�ed L-orthogonal ver-

sion of the Arnoldi Algorithm. It can be shown [13]



that the state-space representation and the transfer-

function of the reduced-order model can be entirely

determined from the outputs of this modi�ed L-

orthogonal Arnoldi algorithm on the Krylov subspace

Kq(�R
�1
L;�R�1b), whose matrix and input vector

correspond to those of the original system in Eqn. (2).

Furthermore, the algorithm can be adapted to have as

inputs the matrices L and R, thus avoiding explicit

computation of R�1 [13]. This algorithm is shown as

Algorithm 1 below, where the vector r is used as an

arbitrary input vector. For instance in (2), we have

r = ej:

d a

c b

Algorithm 1 (Modi�ed L-orthogonal Arnoldi)

arnoldi(input L;R; r; q; output

Uq;vq+1;Hq; hq+1;q)

f

Initialize:

Solve : Ru0 = �r

z0 = Lu0
h0;0 =

p
uT0 z0

z1 = z0=h0;0
u1 = u0=h0;0

for (j = 1; j <= q; j + +) f

Solve Rw = �zj
for (i = 1; i <= j � 1; i + +) f

hi;j = wTzi
w = w � hi;jui

g

zj+1 = Lw

hj+1;j =
p
wTzj+1

if (hj+1;j 6= 0) f

zj+1 = zj+1=hj+1;j
uj+1 = w=hj+1;j

g

g

U q = [u1 � � �uq]

Hq = (hi;j) ; i; j = 1; � � � ; q

In Algorithm 1, it is only necessary to be able to

multiply L by a vector, and then solve a system with

the matrixR. For general problems this implies that

the R must be factored, typically using sparse matrix

techniques. For interconnect problems with a near-

tree like structure, faster algorithms have been pre-

sented [15].

The computational cost of Algorithm 1 is that of

executing one sparse LU factorization for R, q + 1

matrix-vector products for computing the zj vectors,

and q + 1 back substitutions for computing u0 and

the w vectors. It has therefore about the same com-

putational cost as PVL, one back substitution being

roughly equivalent to one matrix-vector product.

Finally, note thatHq has a special structure if both

the L and R matrices are symmetric. This would be

the case for either RL or RC circuits, but not generally

for RLC circuits. In this symmetric case, the output

matrixHq of the modi�ed L-orthogonal Arnoldi algo-

rithm is tridiagonal with negative coe�cients on the

diagonal and positive coe�cients on the subdiagonals.

In addition, the back orthogonalization can be trun-

cated to only two steps.

5 Experimental Results

In this section we present several examples. A sim-

ple RC circuit is examined to show that the gener-

ated Pad�e approximate is unstable but the coordinate-

transformed Arnoldi algorithm produces a stable

reduced-order model. Then, results are presented

comparing the accuracy of the model-order reduction

methods for the RLC circuit of a low-noise ampli�er.

Finally, results are shown of a lumped-equivalent cir-

cuit for a three dimensional electromagnetic problem

modeled via PEEC.

5.1 Simple RC Example

Consider the RC circuit in Fig. 1. Assuming all the

capacitors are one Farad, appropriately choosing the

resistors, and using nodal analysis, the system matrix

for model-order reduction is

A = �R = �G�1 =

2
664

1 r r2 r3

r 1 r r2

r2 r 1 r

r3 r2 r 1

3
775 :

The matrix�R is symmetric and negative de�nite.

However, the 3rd order Pad�e approximate computed

using the input vector r = [1 r r2 r3]T and

the output vector c = �[0 � 1 � r � r2]T is

unstable. This is shown in Table 1, which displays

the poles obtained from the Pad�e approximate (com-

puted using the PVL algorithm) and the Arnoldi al-

gorithms (Here r = 0:4907783849587564). As is also

clear from the table, the Arnoldi-based model is sta-

ble, which is guaranteed by Theorem 5. Furthermore,

the Arnoldi model is also quite accurate. In fairness to

the Pad�e approach using Lanczos, it is always possi-

ble to increase the order of the approximate and then



R1 R2 R3 R4

C1 C4C3C2Vs

Figure 1: RC-circuit that shows that the Lanczos al-

gorithm can produce an unstable model even if the

system is described by a symmetric positive de�nite

matrix.

Pad�e poles Arnoldi poles Exact poles

-0.4855974909 -0.485581569 -0.4855597293

-2.0028417754 -0.997835702 -0.9928423945

2.0359684598 -1.977936016 -1.8198028254
| | -2.6055111711

Table 1: Comparison of poles obtained from Pad�e and

Arnoldi reduced-order models of 3rd order to the exact

poles of the system resulting from the circuit in Fig 1.

postprocess the reduced-order model to eliminate the

unstable modes.

5.2 Low-Noise Ampli�er Example

This example illustrates the relative accuracies of

the Pad�e and the coordinate-transformed Arnoldi al-

gorithms. It also gives results for the block general-

ization of the Arnoldi algorithm, though its detailed

description will be done in a forthcoming publication.

The circuit used for this example is a low-noise am-

pli�er designed for radio-frequency applications. The

circuit and its extracted netlist were introduced in [16],

and we applied our algorithms to the matrices that de-

scribe the resulting linear circuit. The ampli�er is a

two-port network and is therefore modeled as a two-

input/two-output system.

The 2 � 2 matrix transfer-function that fully char-

acterizes the circuit was approximated using both the

Pad�e-via-Lanczos algorithm, the Arnoldi algorithm

and the block Arnoldi algorithm. Figures 2 plots the

magnitude of the ampli�er gain. As is clear from the

frequency response plots, the Arnoldi and Pad�e ap-

proximations are of similar accuracy.

5.3 PEEC Example

The following example was introduced in [7]. The

network is the lumped-element equivalent circuit for

a three-dimensional problem modeled via PEEC. The

circuit consists of 2100 capacitors, 172 inductors and

6990 inductive couplings, resulting in a 304�304 dense
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Figure 2: Low-noise ampli�er voltage gain approxi-

mations. Shown in the �gure are the following ap-

proximants: 40th order Pad�e, 45th order Arnoldi, 30th

and 40th order block Arnoldi. The 40th order block

Arnoldi results are indistinguishable from the exact

gain.

MNA matrix. In [7] it was shown that a 60th order

approximation computed with PVL was able to re-

produce the exact transfer function of the equivalent

circuit. However, it was also reported, that some of

the poles obtained with the PVL algorithm had pos-

itive real parts, albeit small. If the approximation is

intended to be used within a circuit simulator, post-

processing is required to eliminate such poles, which

can be done if their residues are very small. The ap-

proximation obtained with the modi�ed L-orthogonal

Arnoldi algorithm, shown for comparison in Figure 3,

can be seen to be of comparable accuracy, and is guar-

anteed stable. In fact the converged poles in this ap-

proximation all have nonpositive real parts. It can

therefore be used in a circuit simulator unmodi�ed.

6 Conclusions

In this paper we presented a solution of the stability

problem of reduced-order models within the paradigm

of model-order reduction by moment matching. Our

solution is a two-step process, including a state-space

transformation step and an Arnoldi iteration step ap-

plied to the transformed state-space matrix and input

vector. Our solution, which provably guarantees the

stability of reduced-order model, is general in that it

applies to RLC circuits and computationally elegant

in that the two steps can be seamlessly combined in

one single algorithm that does not require the explicit

computation of the state-space transformation. In the

special cases of RC or RL problems, the coordinate-



exact       

pvl (60)    

arnoldi (60)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

0

0.002

0.004

0.006

0.008

0.01

0.012

IBM PEEC

Frequency (Hz)

C
ur

re
nt

 (
A

m
ps

)

Figure 3: Circuit for 3-D problem modeled via PEEC.

Shown in the �gure are the exact solution, and the

60th order PVL and Modi�ed Arnoldi approximations.

Both are able to reproduce the transfer function with

high accuracy.

transformed Arnoldi algorithm produces a symmetric

tridiagonal reduced-order system matrix. We have ex-

hibited a small example which shows that simple RC

circuits can lead to Pad�e approximates that are unsta-

ble but for which the coordinate-transformed Arnoldi

algorithm is stable. The numerical examples that we

have presented include a low-noise ampli�er and a

large RLC PEEC model, both of which could be mod-

eled with reduced-order models that have the merit of

being not only accurate but also stable at any reduc-

tion order.

The authors would like to thank Eli Chiprout, Pe-

ter Feldmann, Roland Freund, Eric Grimme, Chandu

Visweswaraiah, and Andrew Yang for many valuable

discussions.
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