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Abstract—In order to optimize interconnect to avoid signal
integrity problems, very fast and accurate 3-D capacitance ex-
traction is essential. Fast algorithms, such as the multipole or
precorrected Fast Fourier Transform (FFT) accelerated methods
in programs like FASTCAP, must be combined with techniques
to exploit the emerging cluster-of-workstation based parallel com-
puters like the IBM SP2. In this paper, we examine parallelizing
the precorrected FFT algorithm for 3-D capacitance extraction
and present several algorithms for balancing workload and re-
ducing communication time. Results from a prototype implemen-
tation on an eight processor IBM SP2 are presented for several
test examples, and the largest of these examples achieves nearly
linear parallel speed-up.

I. INTRODUCTION

Finding signal integrity problems in high performance integrated
circuits and integrated circuit packaging is extremely difficult, pri-
marily because these problems are typically created by the detailed
interactions between hundreds of conductors. Although 3-D simu-
lation tools can help designers find signal integrity problems, even
the fastest of these tools running on a scientific workstation are too
slow to allow a designer to quickly investigate a variety of conductor
layouts. Therefore, reducing analysis turn-around time is critical, and
can result in 3-D simulation being used as part of design optimization
rather than just a-posteriori verification.

One approach to reducing simulation turn-around time is to exploit
the recently developed parallel computers based on clusters of scien-
tific workstations, like the IBM SP2. Achieving efficiency using the
distributed parallelism available from clusters of workstations is more
challenging than using a specialized parallel supercomputer. Even
with an enhanced communication networks, it will not be possible to
achieve good parallel efficiency with workstation clusters by relying
on huge volumes of short messages.

In this paper we demonstrate that turn-around time for fast 3-D
capacitance extraction can be substantially reduced using a cluster-
of-workstations based parallel computer. In the next section we
present background on 3-D capacitance extraction, and describe one
of the recently developed fast methods for computing capacitances,
the precorrected-FFT accelerated method [1]. In Section 3 we de-
scribe the algorithms used to parallelize the precorrected-FFT based
capacitance extraction program and in Section 4 computational results
are presented. Conclusions are given in Section 5.
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0053 and FBI contract J-FBI-92-196, by SRC under contract SJ-558, and by
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II. BACKGROUND

A. Problem Formulation

The capacitance of anm-conductor geometry is summarized by an
m�m symmetric matrixC . The j-th column of the capacitance matrix
is determined by finding the surface charges on each conductor by
raising conductor j to one volt and grounding the rest. The charge on
each conductor can be determined by solving the integral equation [2]
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A standard approach to numerically solving (1) for � is to use a

piece-wise constant collocation scheme. The conductor surfaces are
broken into n small panels, and it is assumed that on each panel i,
a charge, qi , is uniformly distributed. For each panel, an equation
is written which relates the known potential at the center of that i-th
panel, denotedpi , to the sum of the contributions to that potential from
the n charge distributions on all n panels. The result is a dense linear
system,

Pq = p (2)

where P 2 Rn�n , q is the vector of panel charges, p 2 Rn is the
vector of known panel potentials, and
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where xi is the center of the i-th panel and aj is the area of the j-th
panel.

B. The Precorrected FFT Method

When an iterative algorithm like GMRES [3] is used to solve (2),
the major cost of the algorithm is the order n2 operations required
to form the dense matrix P and the order n2 operations to compute
the dense matrix-vector products for each GMRES iteration. Spar-
sification techniques, such as fast multipole algorithms [4], [5] or
precorrected-FFT methods [1], avoid forming P and can be used to
compute dense matrix-vector products in ordern ornlogn operations.
Empirical studies on typical 3-D capacitance extraction problems in-
dicate that precorrected-FFT methods generally use the least memory
and CPU time.

In the precorrected-FFT method, once three-dimensional conduc-
tor geometry is discretized into panels, the parallepiped containing the
entire problem is subdivided into an k � l �m array of small cubes
so that each small cube contains only a few panels. Several sparsifi-
cation techniques for P are based on the idea of directly computing
only those portions of Pq associated with interactions between panels
in neighboring cubes. The distant interactions can be computed by
exploiting the fact that evaluation points distant from a cube can be



Fig. 1. 2-D Pictorial representation of the precorrected FFT algorithm.
Interactions with nearby panels (grey area) are computed directly,
interactions between distant panels are computed using the grid.

accurately computed by representing the given cube’s charge distri-
bution using a small number of weighted point charges. If the point
charges all lie on a uniform grid, then FFT can be used to compute the
potential at these grid points due to the grid charges.

Specifically,Pq may be approximated in order n logn operations
in four steps: (1) directly compute nearby interactions, (2) project the
panel charges onto a uniform grid of point charges, (3) compute the
grid potentials due to grid charges using an FFT, (4) interpolate the
grid potentials onto the panels. This four-step process is summarized
in Figure 1. The calculations using the FFT on the grid duplicate
the calculation of the nearby interactions and this is precorrected by
modifying the computation of direct interactions.

As an example in step (2) above, charges in a given cube, a, are
projected onto a 3 � 3 � 3 array of grid points. Next, test points
are selected outside cube a’s surface and the potentials due to grid
charges are forced to match the potential due to the cube’s actual
charge distribution at the test points. Since such collocation equations
are linear in the charge distribution, this projection operation which
generates a subset of the grid charges, denoted qga , can be represented
as a matrix, Wa, operating on a vector representing the panel charges
in cube a, qa i.e. qga = Waqa

Once the charge has been projected to a grid, computing the poten-
tials at the grid points due to the grid charges is a three-dimensional
convolution. This is denoted as

 g(i; j; k) =
X

i0;j0 ;k0

h(i� i0; j � j0; k � k0)qg(i
0

; j
0

; k
0): (4)

where i; j; k and i0; j0; k0 are triplets specifying the grid points,  g
is the vector of grid potentials, qg is the vector of grid charges, and
h(i�i0; j�j0; k�k0) is the inverse distance between grid points i; j; k
and i0; j0; k0 . The above convolution can be computed inO(N logN)
time, where N is the number of grid charges, by using the FFT.

Once the grid potentials have been computed, they can be interpo-
lated to the panels in each cube using the transpose ofWa. Therefore,
projection, followed by convolution, followed by interpolation, can be
represented as

 fft = W
t
HWq; (5)

where q is the vector of panel charges, fft is an approximation to the
panel potentials, W is the concatenation of the Wa’s for each cube,
andH is the matrix representing the convolution in (4).

In fft of (5), the portions ofPq associated with neighboring cube
interactions have already been computed, though this close interaction
has been poorly approximated in the projection/interpolation. Denot-
ing Pa;b as the portion of P associated with the interaction between
neighboring cubes a and b, Ha;b as the potential at grid points in cube
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Fig. 2. Parallel computation of the matrix-vector product in a precor-
rected FFT approach

a due to grid charges in cube b,  a and qb as the panel potentials and
charges in cubes a and b respectively, a better approximation to  a is

 a =  afft +
�
Pa;b �W

t
aHa;bWb

�
qb (6)

whereP cor
a;b � Pa;b�W

t
aHa;bWb is the precorrected direct interaction

operator. When used in conjunction with the grid charge representation
P cor
a;b results in exact calculation of the interactions of nearby panels.

III. PARALLEL APPROACH

The most computationally expensive step, and the one which
must be efficiently parallelized, is the matrix-vector product using
the precorrected-FFT method. It is also true that in order to avoid
a serial bottleneck, it is important to parallelize some of the inner
products used in the GMRES algorithm, but this is straight-forward.
In the subsections below, we describe how the problem is decom-
posed onto different processors and then how each of the steps of
the precorrected-FFT method are parallelized. An overview of the
approach to parallelization is shown schematically in Figure 2.

A. Problem Decomposition

Finding an efficient task decomposition for the precorrected FFT
method is difficult, as the task decomposition must minimize inter-
processor communication while simultaneously balancing the oper-
ations required to compute the direct interactions, the grid projec-
tion/interpolation, and the grid convolution.

A single problem decomposition can not insure all sets of oper-
ations in the precorrected-FFT method are simultaneously balanced.
Balancing the direct computation implies balancing the number of
nearby interactions, balancing the projection/interpolation implies as-
sociating the same number of panels with each processor, and bal-
ancing the grid convolution implies associating the same number of
grid points to each processor. One approach to resolving this diffi-
culty is to consider separate decomposition algorithms for each part
of the precorrrected-FFT algorithm, but the advantage of the better
load balancing might be lost due to additional communication costs
associated with realigning the problem decomposition. In this paper,
we take the approach of picking a single decomposition which best
fits the convolution algorithm, that of balancing the number of grid
points per processor, as the convolution is the most computationally
expensive part. As we note in the results section, it is more important
to balance the grid convolution and load imbalances in the number of
direct interactions and charges may not be significant as they take only
a small fraction of the total cpu time.

The decomposition algorithm simply allocates equal number of
grid planes to each processor. The partitioning is performed along
the z-direction or the third FFT dimension and the number of planes
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Fig. 3. 2-D Pictorial representation of the decomposition algorithm

allocated to each processor is computed as

#planes =
#z � direction grid points

nproc
(7)

wherenproc is the number of processors and the number of z-direction
grid points is a power of two. Figure 3 illustrates a two-dimensional
example with 3 squares and 8 lines of grid points for convolution.
Each square contains 9 grid points and a two-way partitioning of
the problem puts 4 lines of points per processor, splitting the second
square (or cube in 3D) in the middle. The charges in cube 1 and
cube 2 are associated with processor 1 and the charges in cube 3 are
associated with processor 2. The first line (plane in 3D) of points in
each processor (except the first processor) is shared by cubes belonging
to processors i and i + 1. The communication associated with this
sharing is described in the section below on projection.

B. Precorrected Direct Interactions

The precorrected direct interaction between panels in a cube and
panels in the cube’s neighbor is computed directly. If all the neighbors
of a cube lie in the same processor, then no inter-processor communi-
cation is neededto compute precorrected direct interactions. However,
if a cube’s neighbor lies in a remote processor, information about the
panels in the neighbor must be communicated to the cube’s proces-
sor. This can be quite expensive as direct interactions are recomputed
every time a matrix-vector product is needed. A faster approach is to
eliminate most of the inter-processor communication by storing copies
of panel charges for remote-processor neighbors, though this second
approach requires somewhat more memory. For the experiments in
this paper, the direct interactions of a cube are computed by using the
faster approach based on storing copies.

C. Projection of Panel Charges onto a Grid

The charges in a cube can be projected onto local representations
of the grid, but some inter-processor communication is required to
complete the global grid representation because of the decomposition
into z planes. To illustrate the problem, consider again Figure 3 where
the problem is decomposed between two processors. The line of grid
points (planes in 3-D), identified as G1;G2 and G3, and denoted as
interface points, are shared by cubes 2 and 3 where cubes 2 and 3
belong to processors 1 and 2 respectively. Grid pointsG1;G2 andG3
are assigned to processor 2 to balance the FFT computation and these
grid points are not known to processor 1. However, processor 1 stores
an extra line (or plane) to maintain information about the interface
points. Denoting q1

G1 and q2
G1 to be the projected charges at grid point

G1 in processors 1 and 2, respectively, the global value for the charge
at grid pointG1 is qG1 = q1

G1 + q
2
G1 To obtain the global values, each

processor i (except the last processor) sends the extra plane of data
it stores for the interface points to processor i + 1. Processor i + 1
receives and adds the data to its local data to obtain the global values
for the interface plane. Processor i, at this stage, does not need the

global values for the extra plane as the interface points are not involved
in the convolution operation in processor i.

D. Convolution

The three-dimensional convolution to compute grid potentials in-
volves a forward 3-D FFT computation of the kernel and the grid
point charges, pointwise multiplication of the kernel and the grid point
charges in the Fourier domain, and 3-D inverse Fourier transform of
the pointwise multiplied data. The kernel is a fixed set of data and
is fourier transformed and stored. The grid point charges, however,
change during each iteration of the GMRES algorithm and must be
Fourier transformed. The three-dimensional grid charge and kernel
data is distributed across the processors along one of the dimensions.
The FFT computations along the two dimensions which are local to a
processor do not require inter-processor communication. For an FFT
along the third dimension data must be moved across the processors.
A high level description of the convolution algorithm is given below:

for every processor iproc, 0 � iproc < nproc do
for k = 1 to nzp=2 do /*half the size because of zero pad*/

for [j = 1:ny/2] fft1d(nx); /*FFT in the first dimension*/
for [j = 1:nx] fft1d(ny); /*FFT in the second dimension*/

end for
transpose();
for i = 1 to ny do

for j = 1 to nxp do
fft1d(nz); /*FFT in the third dimension*/
multiplykernel(nz); /*pointwise multiply with kernel*/
ifft1d(nz); /*Inverse FFT in the third dimension*/

end for
end for
transpose();
for k = 1 to nzp=2 do

for [j = 1:nx] ifft1d(ny); /*Inverse FFT in the 2nd dim*/
for [j = 1:ny/2] ifft1d(nx); /*Inverse FFT in the 1st dim*/

end for
end for

In the above description, nx; ny; nz are the zero-padded sizes
along the first, second and third dimensions, respectively (see Figure
4); nxp = nx

nproc
, nyp = ny

nproc
and nzp = nz

nproc
; fft1d() and

ifft1d() are the 1-D forward FFT and inverse FFT respectively [6],
[7]; multiplykernel() performs a pointwise multiplication of the grid
charges and the kernel in the Fourier domain and transpose() is a
global operation which requires inter-processor communication. To
understand the transpose operation, consider (see Figure 4) a four-way
partitioning of the data. (i; i) denotes the data on processor i which
belongs to processor i and (i; j) denotes the data on processor iwhich
should be transferred to processor j to compute the FFT in the third
dimension. The data is transposed back after a forward FFT in the
third dimension, pointwise multiplication of the kernel and the charge
data, and inverse FFT in the third dimension are done.

E. Projection of Grid Potentials onto Panels

Once the convolution is completed, the potential at the grid points
is available. Then, the first plane of grid points in each processor i
(except processor 0) is sent to processor (i � 1). Processor (i � 1)
overwrites the extra plane it stores with the received potential data.
The extra plane in processor (i� 1) stores the data for the first plane
of grid points in processor i. The panel potentials in each processor
are then computed locally with no inter-processor communication.
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Fig. 4. Definition of the cube dimensions and the transpose operation

IV. RESULTS

Parallel performance results are presented on an IBM SP2 for the
test structures shown in Figure 5. The IBM SP2 is a scalable parallel
system containing upto 12 RISC/6000 Model 590 nodes. Each node
can be configured upto 128 MB memory and upto 2 GB hard disk.
The nodes on the SP2 are interconnected through a high performance
switch. The unidirectional communication bandwidth available at a
node is approximately 40 MB/second.

(a) (b) (c)

Fig. 5. Test structures (a) Cubic capacitor (b) 2 � 2 Bus crossing
problem (c) 2 � 2 Woven bus problem

TABLE I
TOTAL CPU(SEC) FOR CUBIC CAPACITOR ON 1, 2, 4, 8 PROCESSORS

# panels 2400 5400 9600 15000 21600

1 proc 16.69 63.91 91.88 127.19 176.03
2 procs 10.27 36.73 52.46 71.93 98.01
4 procs 7.27 22.20 32.86 46.14 63.80
8 procs 7.25 15.53 23.82 34.27 50.98

TABLE II
TOTAL CPU(SEC) FOR BUS CROSSING ON 1, 2, 4, 8 PROCESSORS

# panels 2200 4312 35200 79200

1 proc 24.12 85.29 * *
2 procs 19.29 54.35 * *
4 procs 12.48 30.77 330.98 *
8 procs 9.19 20.54 178.44 380.63

* indicates insufficient memory

Tables I, II and III summarize the results for the cubic capacitor,
bus crossing and woven bus structures, respectively, employing upto
eight processors. It is observed that on one processor the grid con-
volution algorithm takes between 50-70% of the total CPU time for
larger problems. When the computation of the convolution is signifi-
cant, good speedups and parallel efficiencies are obtained as expected.
Typical results include a speedup of about 5 on 8 processors and a
parallel efficiency of about 60%. The speedup on two processors is

TABLE III
TOTAL CPU(SEC) FOR WOVEN BUS ON 1, 2, 4, 8 PROCESSORS

# panels 4400 17600 39600

1 proc 98.13 216.95 *
2 procs 63.59 165.93 *
4 procs 35.49 91.57 365.43
8 procs 22.87 56.81 202.17

about 1.8 and on four processors it is about 3. Larger problems(e.g.
the 35200 panel bus crossing problem) achieve a nearly linear speedup
of eight. However, when the convolution algorithm is only about 30%
of the total CPU time the parallel efficiencies are about 40% as is to
be expected. The parallel efficiencies can be further improved by load
balancing the direct interactions and the number of charges.

The bus crossing problem with 35200 panels could not be fit on one
and two processors as the program could allocate only about 100 MB
of memory per processor. When the program is compiled to access
memory from hard disk, the 35200 panel example took 2676.8 and
619.2 seconds on 1 and 2 processors, respectively. These results are
not reported in Table II as they would suggest superlinear speedups,
which are unrealistic and an artifact of the large latencies associated
with accessing data from hard disk.

V. CONCLUSION AND ACKNOWLEDGEMENTS

In this paper we have presented a prototype implementation of
the FastCap program on an eight processor IBM SP2. The results
indicate that signal integrity analysis can be performed quickly and
efficiently on network-of-workstation parallel computers. Analysis of
complicated and large 3-D interconnect structures, which cannot be
performed on present day serial computers, can now be performed
with Parallel FastCap. Parallel FastCap is portable to most parallel
computers as it is implemented using MPI standard. The approach
presented in this paper involved minimal changes to serial code and
we have reported good efficiencies. For higher parallel efficiencies we
are presently studying more efficient task decomposition strategies.

The authors would like to thank J. R. Phillips and K. Nabors for
providing the Fastcap and precorrected FFT software on which these
experiments were based.
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