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Abstract

It has been recently suggested that sufficiently accu-
rate integrated circuit cross-talk simulations can be

performed by computing the time evolution of electric
fields both inside and outside three-dimensional in-
tegrated circuit conductors via a finite-difference dis-
cretizat,ion of Laplace’s equation. In this paper the

same calculation is performed, but the volume mesh
associated with finite-difference methods is avoided
through the use of a boundary-element method in
which only conductor surfaces are discretized. Two

boundary-element approaches are investigated, and
it is shown that the straight-forward approach leads

to unacceptable discretizat,ion errors, and a less intu-
itive second approach yields good results even with

coarse surface meshes. Finally, numerical experi-
ments demonstrating the effect iveness of the second

approach in calculating cross-talk are presented.

1 Introduction

A simplified approach to analyzing the parasitic cou-
pling between nearby lines of interconnect on an in-

tegrated circuit, referred to as cross-talk, is to com-
pute a lumped resistor-capacitor model for the in-

terconnect structure. Such an approach provides a
certain amount of insight, but doesn ‘t model the dis-

tributed effects accurately enough to make aggressive

design decisions. Recently it was suggested that suf-
ficiently accurate cross-talk simulations could be per-
formed by computing the time evolution of the elec-

tric fields both inside and outside the integrated cir-
cuit conductors via a finite-difference discretization of

Laplace’s equation[4 .
J

In that approach, the simpli-
fied equations were erived by assuming the magnetic
fields and volume charges were negligible.

In this paper, we perform this same calculation
but avoid the volume mesh associated finite-difference

methods. To see why this is feasible, consider that
the absence of volume charge and magnetic fields im-

ply that currents which flow through conductors only
serve to increase or decrease conductor surface charge
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with time. This suggests that a boundary-element

method, in which only conductor surface quantities
are computed, can capture the transient phenomenon.

In this paper, two boundary-element approaches are
investigated, and it is shown that the most straight-

forward approach leads to unacceptable discretization
errors, and a less intuitive second approach yields good

results even with coarse surface meshes. Finally, nu-
merical experiments demonstrating the effectiveness
of the second approach in calculating cross-talk are
presented.

In the next section, our assumptions about the
cross-t alk problem are given, and several basic results
derived. In section 3, we derive a source formulation

for the transient interconnect problem, and demon-
strate the difficulties with discretizations of that ap-

proach. A Green’s theorem based formulation is de-
rived in section 4, and its advantages compared to the

source formulation are made clear. In section 5, we

present some application results. Finally, we give our
conclusions and acknowledgements in Section 6

2 Basic Assumptions and Con-

sequences

For homogeneous dielectric media, the electric field, E
satisfies

V. E=!?
c’

(1)

where P is the volume charge density and e is the di-
electric permitivity. Inside a conducto~, the current
density, J, is given by J = UE where u M the conduc-
tivity y of the material. Conservation of charge implies
that

V.J+

and substituting for J in terms of

yeilds

V. E=–;~.

(2)

the electric field

(3)

Combining (1) and (3) leads to an equation for the
time evolution of the volume charge inside a conduc-

tor, as in
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where ~ = ~ is the dielectric relaxation time, and

is of the order of hundreds of femtoseconds. Note
that at such time scales, the assumed constitutive re-
lations between J and E are not likely to still apply,
so (refeq:qdecay) should only be used as an indicator

of longer time behavior.
From (4), it follows that any initial charge in the

interior of a conductor must rapidly decay, and this
volume charge never increases, regardless of what hap-

pens on the periphery of the conductor. For this rea-
son, volume charge inside the conductor can always
be neglected. The computationally important impli-
cation of zero conductor volume charge is that all cur-

rents flow through the conductor to the conductor sur-
face, where they produce a build-up of surface charge.

Note that this surface charge may be “bled off” by
external circuitry at points where contact is made to
the conductor.

It is generally assumed that for integrated circuit

interconnect, length scales are such that magnetic ef-
fects can be ignored, though this may not continue to
be the case as integrated circuit speeds increase. This
assumption implies that the electric field, E, is given
by E = V+, where ~ is a scalar potential. Also, there

is zero volume charge in the free space outside the
conductor, and as shown above, zero volume charge

inside the conductor. Together, these several observa-
tions imply that (1) can be simplified to

V2$ = c1 (5)

everywhere except on the conductor surface. There-
fore, ~ can be related to the conductor surface charge,

P,, through the superposition integral

P.(x’)
da’l’(x) = ~ 4T,[[X - Z’11 (6)

where S is the union of all the conductor surfaces, and

11x – x’11 is the Euclidean distance between x and z’.

As conductor surface charge is now the only charge

in the probleln, we have from conservation of charge
that at any point x on the conductor surface which is

not an external contact point,

at
and on any point

a contact point

ap.(x).—
m

z on the conductor surface which is

=J ,zo.ma,(x) - J.A.n.)(x) (8)

a~(x)=— (7 — – Jezter,,.l(x)
h

where JnO,mai(.r) is the current density along the

inward directed normal to the conductor surface,

~e~t~~~~l(x) is the current density supplied to the con-
ductor through the contact, p, is the conductor surface

charge, and % is the spatial derivative of @ along

the inward directed normal to the conductor surface.

3 Source Formulation

In this section, a physically simple boundary integral
formulation for the transient interconnect problem is
presented, along with a discretization procedure. An
example is given to demonstrate that the solutions ob-
tained by discretizing this simple formulation have un-

acceptable errors. In the next section, a less intuitive
formulation is given which alleviates these difficulties.

3.1 Integral Formulation

A simple boundary formulation for the transient in-

terconnect problem can be derived by eliminating the

normal derivative of the potential from (7) and (8) by
differentiating (6) and substituting. For non-contact
points on the conductor surface this yeilds

ap.(z) ==

J

a
—u

p. (x’)——
at ZX4TCIIX – X’[1

da’, (9)
s

and for external contact points,

ap,(x)

/

a Ps(~’) da,—— =
at

- le=ternat(x).
‘o s X4T611X – Z’11

(lo)

3.2 Charge Discretization

To numerically solve (10) for p. at non-contact con-

ductor surfaces, and both Je=te,nal and p, at contact
surfaces, the surfaces of all the conductors are broken

into small panels or tiles. It is then assumed that on
each panel /, there is a constant surface charge ql. In

addition, it is assumed that for each panel of a contact
surface, /c, there is a constant current density JC.

If there are n total panels, rn of which belong to con-
tact surfaces, then there are n unknown panel charges,

and m unknown contact panel currents, for a total of

m + n unknowns. To generate a system of n + m
equations from which these n + m unknowns can be

L
computed, a collocation scheme is used [2] 5]. That is,

(9) is enforced at the center point in eac of n – m
non-contact panels and (10) is enforced at the center
point of each of the m contact panels. The result is a
linear system of the form

4~r;q(t) = –Dq(t) + AJC(t). (11)

where q(t) E !l?n is the vector of time-varying panel

charges, ~c(t) c Wm is the vector of time-varying con-

tact panel currents, A E W x m is a matrix of nearly
all zeros, except At,l_(n_m) = 1 if 1 is a contact panel,

and D E !Rnxn is given by

where Xk is the center of panel k. Note that in defining

A, it is assumed the elements of J= are appropriately
normalized.
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Figure 1: Conductive cube with one side driven by a
voltage step.

Given that charge density is assumed constant on

each panel, from (6) it follows that the m contact panel
potentials, which are assumed constant over the panel,
are related to the n panel charges by

Wc = Pq (13)

where WC ● %!’” is the vector of contact panel poten-
tials and P E Wxn is given by

where al is the area of the lth panel, and xk is the

center of the Icth panel.

3.3 Numerical Difficulties

The combination of(11) and (13) yeilds a differential-
algebraic system of n+771 equations in rz+m unknowns.

It is straight-forward to solve this system numerically

for the time evolution of the panel charges, and to use

(6) to compute potentials at any conductor surface
point of interest. Unfortunately, the results from such

a calculation contain spatial discretization errors that
preclude the scheme’s use as part of a circuit simula-
tion program.

This numerical difficulty can best be demonstrated

by examining a simple example, such as the conduc-
tive cube shown in Figure (l). One face of the cube is

assumed to be driven by an ideal voltage source which
makes a unit step transition, and therefore this driven
cube face is an isopotentia] surface whose potential
changes, at time zero, from zero to one volt. The
correct behavior of the potentials at points on non-
driven cube surfaces is obvious, they should change,

over time, from zero to one volt.
Figure (2) is a plot of the time behavoir of the po-

tential at an observation point on the cube face oppo-
site the driven face, for three successively finer surface
discretizations. As even the plot based on discretizing
the surface into 1944 panels shows, the discretization

error is such that the computed equilibrium, or final

0[ I
05101 s2025?4 35404550

Tim (Nondizd toT*u)

Figure 2: Potential computed at the observation point

using three different uniform surface discretizations of
the source formulation. The dotted line is the result

of using 54 panels, the dashed line the result of using
486 panels, and the solid line is the result of using 1944

panels.

value, for the potential is only about 0.85 volts. Such

an error is clearly unacceptable if the intention is to
use the calculation procedure as part of a circuit sim-

ulator.

4 Green’s Formulation

The nonphysical nature of the discretization error in

the source formulation stems primarily from the fact
that charge is discretized, rather than potential. This

can be remedied by switching to a formulation based

on Green’s identity. Using this second formulation
allows the potential to be discretized directly, and

insures that isopotential equilibrium behavior is re-
tained regardless of the spatial discretization. In the

three subsections below we derive this Green’s iden-
tity based formulation, describe the numerical dis-
cretization procedure, and compare computed results
with those produced using the source formulation to

demonstrate the Green’s formulation’s advantages.

4.1 Formulation Derivation

As + satisfies (5), it is easily derived from Green’s
theorem that[3]

where S’i is the closed surface of the i~h conductor, and

z is some point on Si. It also follows from Green’s
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theorem that if x is outside conductor i, then

I 1
da’ (16)W):4=611X – X’11

s,

-J 84(2+)1

s, W 47K[IZ – X’11
da’ = O.

Summing appropriately (15) or (16) over all the
conductor surfaces yields

*(x) =
J.4(~’)&i~da’ (17)

c

—
f. w 4.(IILII da’”

where S is the union of the conductor surfaces Si, and

z is some point in S.

Decomposing the second integral in (17) into con-
tact and non-contact surfaces, and then substituting
using (7) and (8) leads to

Two of the integrals in (18) can be eliminated by notic-

ing that the time-derivative of (6) yields

m=
/

dps (z”) 1 da,

(% s la 47WIILT – I?ll “
(19)

Combining (18) with (19), and then substantially re-
organizing, produces

where again note that

,ecterna,(.) = Q’& -.* (21)

is, not surprisingly, the sum of displacement and re-
sistive current at the contact point z.

Although perhaps tedious to derive, (20) has the

advantage of including as unknowns only the variables
of interest, that is, only the surface potentials and the

contact surface currents.

4.2 Discretization

To numerically solve (20) for@ at non-contact conduc-
tor surfaces, and for J at contact surfaces (as defined
in (21)), the surfaces of all the conductors are bro-
ken into small panels or tiles. It is then assumed that
on each panel 1, there is a constant surface potential
W/. In addition, it is assumed that for each panel of a
contact surface, /c, there is a constant current density
r

Jc.

If there are n total panels, m of which belong to con-
tact surfaces for which the potential is known a-priori,

the vector of constant panel potentials, W E $?’, has
n— m unknown entries. As none of the entries of the
vector of m constant contact panel currents, J. E W’,
is known a-proiri, a total of n unknowns must be de-
termined. To generate a system of n equations from
which the unknown elements from the vectors W and

J. can be computed, as with the source formulation
a collocation scheme is used [2] [5]. That is, (20) is en-
forced at the center point in each of n panels. The

result is a dense linear system of the form

4rr;W = (D – 47)Q + PJ (22)

where D G W x n whose elements are

and where P E %!n’~ whose elements are

where Xk k the center of the kth panel. Note here that

the elements of J here are normalized by a.

4.3 Comparison to the Source Formu-
lation

The Green’s identity based formulation has several ad-
vantages over the source formulation. The discretiza-
tion of the source formulation produces a system of

n+m equations in n+m unknowns, and the discretiza-

tion of the Green’s formulation produces an system of

only n equations in n unknowns. In addition, all the
surface potentials are calculated in the case of the dis-

cretized Green’s formulation, but in the case of the
discretized source formulation the surface potentials
at points of interest must be derived from integrals of
computed surface charges.

To show the superior accuracy in the surface po-
tential produced by the discretized Green’s formula-
tion, again consider the simple conductive cube exam-
ple shown in Figure (1). Figure (3) is a plot of the time
behavior of the potential at an observation point on
the cube face opposite the driven face, for three succe-

ssively finer surface discretizations. As comparing the
plots in Figures (2) and (3) make clear, the discretized

Green’s formulation converges with panel refinement
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Figure 4: Cross-Talk Simulation Scenario

Figure 3: Potential computed at observation point in

Figure 1, using three different uniform surface dis-
cretizations of the Green’s formulation. The dotted

line is the result of using 54 panels, the dashed line
the result of using 486 panels, and the solid line is the
result of using 1944 panels.

much more rapidly than the discretized source formu-
lation, and in addition, the discretized Green’s formu-
lation computes the correct equilibrium, or final value,

of the potential regardless of the coarseness of the dis-
cretization.

Figure 5: Two-unit length discretization

5 Application Experiments

The most obvious application for the above tech-
nique is determining how much changes in voltages

on a given conductor are capacitively transmitted to

nearby conductors. In particular, we consider the sce-

$
nario depicted in Figure 4), in which a voltage step
is applied to the near en of one conductor, and its

effect is monitored at the far end of a parallel conduc-
tor which has its near end grounded. The intent is

to model realistic interconnect, in which typically one
end of every conductor is driven and the other end is

connected to a high-impedence input. Clearly it is dif-
ficult to approximate how much the voltage will rise

at the far end of the grounded conductor.

To compute this voltage rise on the far end of
the grounded conductor as a function of the length

of the parallel pair, we used the discretized Green’s
formulation given in (22) combined with a fixed-
timestep backward-Euler algorithm, and used 200
fixed timesteps. The resulting matmx problems were

solved using one L-U factorization, and 200 forward-
elimination/bacliward-substitutions. To examine the

length effects, the conductors were each assumed to be
of unit square cross-section and a unit distance apart.
llansient solution~ welje computed for conductors of
2, 4, 6, and 8 units. The surface discretizations for the

length 2 and 8 computations are given in Figures (5)

and (4) respectively, and the transient behaviors for
several lengths are plotted in Figure (6).

Note that the time-axis in all these plots is nor-

malized to T = ~. This makes a point that was not

initially obvious to the authors, that the peak magni-
tude of the cross-talk pulse is unaffected by changes

in either the conductivity, a, or the dielectric permit-
tivity c. Though, of course, the period of the pulse is

directly proportional to ~ = ~.

Finally, the key point of this work is demonstrated

in Table 1, in which the number of panels, or un-
knowns, and the CPU time required for the transient

calculation on an IBM RS6000 model 540 is presented.
Note that the most expensive calculation requires less
than half a minute, which compares very favorably to
computation times required by finite-difference based
techniques[4]

length unknowns CHPIYiF

2 132 4.7 s

8.9 s
6 228 14.2 sI

8 276 I 30.8 s

Table 1: CPU times for Transient Calculation
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Figure 6: Cross-Talk waveforms for several intercon-
nect lengths. The solid line is for a 2-unit long inter-
connect, the dashed line for a 4-unit long interconnect,
the dotted line for a 6-unit long interconnect, and the
dash-dotted line for a 8-unit long interconnect.

6 Conclusions and Acknowl-

edgements

In this paper it is demonstrated that boundary-
element techniques can be used to perform very ef-

ficient transient simulation of three-dimensional inter-
connect structures, fast enough to easily be included
in a circuit simulator. It was first shown that rea-

sonable discretizations of the most obvious integral
formulation do not produce results of acceptable ac-
curacy, and a less intuitive formulation was derived
and shown to insure reasonable results even for coarse
discretizations.

Note that for the experiments presented in

this paper, the differential-algebraic system in

(22) was solved using a simple backward-Euler
scheme. However, a variety of techniques such as

backward-difference methods[l or moment-matching
c1algorithms[4] can also be use . Alsoj although the

system in (22) is dense, the formulation has advan-
tages over using finite-difference or finite-element tech-
niques applied to solving (5) directly. Since only the
tw~dimensional conductor surfaces are discretized,

rather than the three-dimensional volume containing
the problem, as would be the case with finite-difference
methods, the discretization is easier to generate and
the resultin system contains many fewer unknowns.

fUnfortunate y, the resulting matrix problem is dense,
and therefore the comparison to finite-difference meth-
ods is not clear.

Note that the direct factorization algorithm used in
the numerical experiments presented above limits the
size of problems which can be analyzed to relatively
simple, but still interesting, structures. In addition,
homogeneous dielectric media was assumed, and. this
may not be realistic. To address these short-commgs,

we are investi$atin using iterative techniques to per-
?form the matrix so ution, as well as trying to improve

the efficency of the matrix coefficient calculation using

multipole algorithms. Also, we are examining how to

include dielectric interfaces in our formulation.
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