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Abstract

The new three-dimensional capacitance calculation

program FASTCAP2 is described. Like the earlier pro-

gram, FASTCAP, FASTCAP2 is based on a multipole-

accelerated algorithm that is eficient enough to al-

low three-dimensional capacitance calculations to be

part of an iterative design process. FASTCA P2 d~ffers

from FASTCAP in that ii is able to analyze problems

with multiple dielectrics, thus extending the applica-

bility of the multipole-accele rated approach to a wzder

class of integrated circuit interconnect and packagtng

problems.

1 Introduction

The self and coupling capacitances associated with

integrated circuit interconnect and packaging are be-

coming increasingly important in determining final

circuit performance and reliability. However, accu-

rate estimation of these capacitances involves analyz-

ing innately three-dimensional structures with dielec-

tric materials surrounding conductors in a complicated

fashion. Integrated circuits, for example, have mul-

tiple layers of polysilicon or metal conductors, sepa-

rated by conformal or space-filling dielectrics. Also,

packaging and off-chip interconnection problems of-

ten involve connectors passing through several plas-

tic or ceramic dielectrics. The recent development

of rnultipole-accelerated boundary-element methods

for three-dimensional capacitance extraction has made

accurate analysis of very complex structures in a uni-

form dielectric computationally inexpensive [5]. This
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paper extends the original method to problems where

the conductors are surrounded by multiple dielectric

regions of arbitrary shape, thus allowing the analysis

of more realistic integrated circuit interconnect and

packaging problems.

The following section describes the equivalent-

charge approach to analyzing structures with dielec-

tric interfaces. Section 3 then shows how this formu-

lation can be used as a framework for a multipole-

accelerated iterative solution method. The method’s

utility is demonstrated in Section 4 by applying our

implementation of the algorithm, FASTCAP2, to sev-

eral examples.

2 Equivalent-Charge Formulation

To determine all the self and coupling capacitances

of a structure with m conductors, the conductor sur-

face charges must be computed m times, with m dif-

ferent sets of conductor potentials. In particular, if

conductor i is raised to unit potential and the rest

are grounded, then the total charge on conductor i

is numerically equal to conductor i’s self capacitance.

Furthermore, any other conductor’s total charge is nu-

merically equal to the negative of its coupling capaci-

tance to conductor i.

Given the conductor potentials, the conductor
surface charges can be computed by replacing the

conductor-dielectric and dielectric-dielectric interfaces
with a surface charge layer of density U(Z) and chang-

ing all the dielectric regions to free space. Then

in this equivalent free-space problem, a(x) is deter-

mined by insisting that it produce a potential which

matches conductor potentials at conductor-dielectric

interfaces, and sat isfies normal electric-field conditions

at the dielectric-dielectric interfaces [2, 6].

To numerically compute u, the conductor surfaces
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Figure 1: The panels used to discretize a 2x 2

dielectric-coated bus-crossing problem. The lower

conductors’ surfaces are discretized in the same way

as the two upper conductors’ surfaces.

and dielectric interfaces are discretized into n = np +

nd small panels or tiles, with np panels oll conductor

surfaces and nd panels on dielectric interfaces a-s in

Figure 1. It is then assumed that on each panel i, a

charge, qi, is uniformly distributed. For each conduc-

tor surface panel, an equation is written which relates

the potential at the center of that i-th panel, denoted

pi, to the sum of the contributions to that potential

from the n charge distributions on all n panels. For
example, the contribution of the charge on panel j to

the potential at the center of panel i is given by the

superposition integral

where ~i is the center of panel i, aj is the area of

panel j, co is the permittivity of free space, and the

constant charge density qj /aj has been factored o~lt of

the integral. The total potential at xi, is the sum of

the contributions from all n panels,

pi(~i) = ~ilql+~i2!?2+< “ “+~ijqj +“ “ “+pinqn, (2)

where

Pij ~ L ! 1
da’.

~ane, j 47fCollZi – 2’[1
(3)

LZj

Similarly, for each dielectric interface panel, an equa-

tion is written that relates the normal displacement-

field difference at the center of that i-th dielectric in-

terface panel to the sum of the contributions to that

displacement field due to the n charge distributions on

all n panels. In particular, if panel i lies on the inter-

face between dielectrics with permittivities C. and cb,

then the Gauss’s Law condition

(4)

must hold. Here ni is a normal to panel i. Substituting

the expression (2) breaks (4) into a superposition over

all the panels,

Dilql +Dizqz+ ““”+ ~ijqj + ““”+ ~infln = 0, (5)

where

Careful evaluation of the derivative in (6) leads to the

important special ca3e [3]

(7)

Collecting all n equations of the form (2) and (5)

leads to the dense linear system

or

[mq’=m (9)

where P ● RnPxn is the matrix of potential coeffi-

cients, D 6 Rndxn “1s the matrix representing the di-

electric interface boundary conditions, q E Rn is the
vector of panel charges, and p c RnP is the vector of

conductor-panel center-point potentials. Using

‘s[:l WI) ’10)
gives

Aq=b (11)

as the linear system to solve to for the conductor

charge densities. In the standard approach the n x n

linear system (11) is solved using a Gaussian elimina-

tion algorithm at a cost of order n3 operations [8, 6].

Our algorithm uses the multipole-accelerated iterative

method of the next section which requires only order

mn operations.
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3 The Multipole Approach

The dense linear system of (11) can be solved to

compute panel charges from a given set of panel po-

tentials, and the capacitances can be derived by sum-

ming the panel charges. If Gaussian elimination is

used to solve (11), the number of operations is or-

der n3. Clearly, this approach becomes computation-

ally intractable if the number of panels exceeds several

hundred. Instead, consider solving the linear system
(11) using a conjugate-residual style iterative method

like GMRES [9]. Such methods have the form given

below:

Algorithm 1: GMRES algorithm for solving (11)

Make an initial guess to the solution, q“.

Set k = 0.

do {

Compute the residual, rk = b – Aqk.

if Ilrll < tol, return qk as the solution.

else {

Choose a’s and ~ in

‘+’ = ~$=o o!jq~ + brk

to linimize llrk+lll.

Setk=k+l.

}

}

Here II. II is the Euclidean norm. The dominant costs of

this strategy are calculating the n2 entries of A using

(3) and (6) before the iterations begin, and then per-

forming nz operations to compute the matrix-vector

product Aqk on each iteration. It is possible to avoid

forming most of A and to substantially reduce the cost

of computing Aqk if an approximation to Agk can be

tolerated [7].

The approximation used here is the multipole algo-

rithm, an efficient way of calculating the potential due

to a charge distribution in free space that reduces the

cost of forming Aqk to order n operations [1]. This

does not necessarily imply that each iteration of the

GMRES algorithm can be computed with order n op-

erations, If the number of GMRES iterations required

to achieve convergence approaches n, then the mini-
mization in each GMRES iteration requires order n2

operations. This problem is avoided through the use

of a preconditioned which reduces the number of GM-

RES iterations required to achieve convergence to well

below n for large problems [4].

The produat Agk is, using (9),

[1Pq~
Aqk = ~qk . (12)

~ d evacuation points
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d paneIs
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>

m

Figure 2: The direct evaluation of the potential due

to d panel charges at d points.

d evaluation points
\

\

Figure 3: The evaluation of a the potential due to d

panel charges at d points using a multipole expansion.

Forming the product Pqk is equivalent to calculating

the potential at all the conductor panel center points,

making it possible to approximate it directly with the

fast multipole algorithm. Although Dqk has the di-

mensions of electric displacement, it can be expressed

in terms of potential evaluations, leading to fast eval-

uation with the multipole algorithm.

3.1 Potent ial Evaluations

The key approximation employed in the multipole

algorithm is the evaluation of potentials using multi-

pole expansions. Consider evaluating the potential at

d panel centers due to charges on another d panels as

in Figure 2. In a direct evaluation, a single panel’s

center-point potential is calculated using an explicit

equation like (2). In the Figure 2 case, d Pijqj prod-

ucts are computed and added at a cost of d operations.

Repeating the process for all d evaluation points re-

quires d2 operations.

When the charge panels are well-separated from the

evaluation points the potentials can be approximated

at much lower cost using a multipole expansion. A
multipole expansion is a truncated series expansion of

Psper 42.3
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the form

where (ri, @i, Oi) are the spherical coordinates of panel

i’s center point (the evaluation point) measured rela-
tive to the origin of the multipole expansion, Y{ (~i, Oi)

are the surface spherical harmonics, 1 is the expansion

order, and A4~ are the multipole coefficients which are

determined from the well-separated panel charges us-

ing

The use of the expansion is illustrated in Figure 3.

A single multipole expansion for the potential due to

the d panel charges is evaluated at the d evaluation
points. Since the expansion is used many times, the

cost of computing it may be neglected. Thus the lmul-

tipole evaluation of the same d potentials requires only

d operations.

The reduction in complexity resulting from the ag-

gregation of distant panels into multipole expansions

which can be used to evaluate potentials at many

panel centers is the source of the multipole algorithm’s

efficiency. Maintaining this efficiency for general dis-

tributions of panels while controlling error leads to the

hierarchical multipole algorithm used in FASTCAP2.

A detailed description of the complete multipole al-

gorithm is given in [1] and its use in the context of

capacitance extraction is described in [5, 4].

3.2 Electric Field Evaluations

The evaluation of Dqk amounts to calculating the

left-hand side of rzd equations of the form (5) or, equiv-

alently, (4). The left-hand side of (4) can be approx-

imated by replacing the derivatives by divided differ-

ences constructed near panel i as illustrated in Fig-

ure 4, yielding

Thus the n multiply-adds required to find one inner

product in DqL are replaced by three multipole al-

gorithm potential evaluations followed by the divided

difference calculation (15). In this way the bulk of the

displacement field calculation is performed using the

efficient multipole algorithm to compute the potentials

Pi(~i), P=(~~) and pb(z~).

4’Xa

Figure 4: The electric fields on both sides of the dielec-

tric panel are approximated with divided differences.

4 Results

To demonstrate the efficiency and accuracy of

the multipole-accelerated capacitance extraction algo-

rithm for problems with multiple dielectrics, the ca-

pacitances associated with the easily parameterized

bus-crossing structure of Figure 1 are calculated. The

Figure 1 problem is called the 2 x 2 bus-crossing prob-

lem and is representative of the 1 x 1 through 5 x 5

bus-crossings examined here. In all these problems the

lower bus is covered with a layer of conformal dielec-

tric with permittivity c. = 7.5c0 while the surround-

ing material has permittivity ~h = 3.96.. All the con-

ducting bars have lpm x lpm cross-sections, and all

overhang and inter-conductor spacings are lpm. The

conformal dielectric is nominally 0.25pm thick.

The accuracy attained by our program, FAST-

CAP2, is investigated using the Figure 1 problem. The

smallest coupling and self capacitances in the prob-

lem are calculated using FASTCAP2 and by Gaussian

elimination applied directly to (11), the standard di-

rect method. The entries in Table 1 represent the ca-

pacitances associated with the top, rear conductor in

Figure 1. By default FASTCAP2 is configured to pro-

duce capacitances within 1% of those calculated using

direct factorization, as is clearly the case here. Thus
any error in the FASTCAP2 capacitances is domi-

nated by discretization error rather than multipole ap-

proximation effects.
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C31 C32 C33 C34

Direct -0.2112 -0.2112 0.9854 –0.3200

FASTCAP2 –0.2113 –0.2112 0.9886 –0.3212

Table 1: Comparison of capacitances (in fF) for the

Figure 1 problem.

Figure 5: The discretization used to compute the ca-

pacitance of a dielectric-coated sphere in free space.

Some of the outer dielectric-bou?~ dary panels have

been removed to show the inner conductor surface

panels.

Using the dielectric-coated sphere of Figure 5,

FASTCAP2’S accuracy is further demonstrated by

comparing its result to an analytic value. The inner

conducting sphere of radius lrn is coated by a lm thick

dielectric layer with relative permittivity 2. The sur-

rounding region is free space. By Gauss’s Law, such a

structure has capacitance 148.35pF. The value calcu-

lated using FASTCAP2 applied to the discretization

of Figure 5 is 148.5pF, well within l% of the analytic

value.

The program’s execution speed for the four bus-

crossing problems is compared to the speed of the

standard direct, method in Table 2. The values in

parenthesis indicate extrapolated execution times cor-

responding to problenls that could not be solved using

the standard method due to excessive memory and

time requirements. FASTCAP2’S lower complexity

leads to much lower execution times for even nlod-

Problem 1X1 2x2 3x3 4X4

Panels 664 1984 3976 6640

Direct 1.4 41 (320) (1400)

FASTCAP2 0.44 2.4 8.6 20

Table 2: Comparison of execution times in I.B.M.

RS600/540 CPU minutes. Values in parenthesis are

extrapolated.

20

18 -

16 -

14 -

12 -

10 -

8 -

6 -

4 -

2 -

0
0 10 20 30 40 50 IsJl

(number of cmdwtms, m)*(tiousamds of panels, n)

Figure 6: Demonstration of the order mn complex-

ity of FASTCAP2 using the four bus crossing exe-

cution times. Times in CPU minutes on an I.B.M.

RS6000/540.

crate sized problems like the 2 x 2 bus crossing. In

particular, in the time required to compute the capac-

itance of the 4 x 4 bus crossing problem using standard

direct methods, FASTCAP2 can perform seventy such

calculations.

Finally, FASTCAP2’S execution time is shown to

grow roughly linearly with mn, where m is the number

of conductors and n is the number of panels. Figure 6

plots the FASTCAP2 execution times in Table 2 verses

mrz for the bus-crossing problems. As is illustrated,

the execution time data points closely follow the best-

fit straight line, indicating order mn complexity.

As a final example of the kind of analysis made pos-

sible by FASTCAP2, consider the connector in Fig-

ure 7. The U-shaped polyester body has a relative

permittivity of 3.5; the pins have 0.65mmx0.65mm
cross-sections and are spaced 3.25mm center to cen-

ter. Connectors of this type must be analyzed care-

fully when used for

Using a 9524-panel

high-speed bus connections [10].

discretization, FASTCAP2 com-
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Figure 7:

putes all the

pins in thirty

The backplane connector example.

self and coupling capacitances for the

CPU minutes on an IBM RS6000/540.

An identical analysis using standard Gaussian elim-

ination algorithms requires roughly eight CPU days

on the same machine. The four pins in the the center

have the highest self capacitances: 0.547pF. The low-

est self capacitance is 0.481pF and is attained by the

four corner pins. The strongest coupling capacitances,

slightly more than 0.2pF, occur between pin pairs next

to the sides of the connector body. By grounding four

pins on a diagonal and the four pins on the remaining

parallel two-pin diagonals, the maximum signal pin

coupling capacitance is reduced to around 0.065pF.

5 Conclusion

The multipole-accelerated capacitance extraction

algorithm haa been extended to problems with ar-

bitrarily shaped, multiple-dielectric regions. The ex-

tended algorithm as implemented in FASTCAP2 has

the same 170 accuracy and reduced time and memory

requirements of the original algorithm. In particu-

lar, FASTCAP2 is fast enough to allow capacitance

extraction of complex three-dimensional, multiple-

dielectric geometries to be part of an iterative design

process.
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