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Abstract

In this paper we present an approach to the nonlinear model reduction
based on representing the nonlinear system with a piecewise-linear sys-
tem and then reducing each of the pieces with a Krylov projection. How-
ever, rather than approximating the individual components as piecewise-
linear and then composing hundreds of components to make a system
with exponentially many different linear regions, we instead generate a
small set of linearizations about the state trajectory which is the response
to a ‘training input’. Computational results and performance data are
presented for a nonlinear circuit and a micromachined fixed-fixed beam
example. These examples demonstrate that the macromodels obtained
with the proposed reduction algorithm are significantly more accurate
than models obtained with linear or the recently developed quadratic
reduction techniques. Finally, it is shown that the proposed technique
is computationally inexpensive, and that the models can be constructed
‘on-the-fly’, to accelerate simulation of the system response.

1. Introduction

Integrated circuit fabrication facilities are now offering digital system
designers the ability to integrate analog circuitry and micromachined de-
vices, but such mixed-technology microsystems are extremely difficult
to design because of the limited verification and optimization tools avail-
able. In particular, there are no generally effective techniques for auto-
matically generating reduced-order system-level models from detailed
simulation of the analog and micromachined blocks. Research over the
past decade on automatic model-reduction has lead to enormous progress
in strategies for linear problems, such as the electrical problems associ-
ated with interconnect and packaging, but these techniques have been
difficult to extend to the nonlinear problems associated with analog cir-
cuits and micromachined devices.

In this paper we present an approach to the nonlinear model reduction
based on representing the nonlinear system with a piecewise-linear sys-
tem and then reducing each of the pieces with Krylov subspace projec-
tion methods. However, rather than approximating the individual com-
ponents as piecewise-linear and then composing hundreds of compo-
nents to make a system with exponentially many different linear regions,
we instead generate a small set of linearizations about the state trajec-
tory which is the response to a "training input”. At first glance, such an
approach would seem to work only when all the inputs are very close to
the training input, but as examples will show, this is not the case. In fact,
the method easily outperforms recently developed techniques based on
quadratic reduction.

We start in the next section by describing a circuit and a micromachined
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Figure 1: The nonlinear circuit example.

device example, to make clear the nonlinear model reduction problem,
and then in Section 3 we describe the existing nonlinear reduction tech-
niques in a more abstract setting. In Section 4, we present the trajectory-
based piecewise-linear model order reduction strategy and outline an ap-
proach for accelerating the needed simulation. Examples are examined
in Section 5, and in Section 6 we present our conclusions.

2. Examples of nonlinear dynamic systems

A large class of nonlinear dynamic systems may be described using the
following state space approach:

dx(t) _
) _ f(x(1)) + Bult)
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where x(t) € RN is a vector of states, f : RY — R" is a nonlinear vector-
valued function, B is an N X M input matrix, u : R — RM is an input
signal, C'is an N x K output matrix and y : R — RX is the output signal.

In this paper we will focus on two distinct examples of nonlinear systems
which may be described by equations (1) and, due to their highly non-
linear dynamic behavior, illustrate well the challenges associated with
nonlinear model order reduction.

The first example, considered by Chen et al. [1], is a nonlinear circuit
shown in Figure 1. The circuit consists of resistors, capacitors and diodes
with a constitutive equation iy(v) = exp(40v) — 1.! For simplicity we
assume that all the resistors and capacitors have unit resistance and ca-
pacitance, respectively (r = 1, C = 1). In this case the input is the current
source entering node 1: u(t) = i(¢) and the (single) output is chosen to
be the voltage at node 1: y{(¢) = v (¢).

'In the linear model, considered later on, we assume that iy(v) = 40v
and in the quadratic model — iz(v) = 40v + 800v2.
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There are two key issues concerning representation (5) of the initial dy-
namic system (1). The first one is selecting a reduced basis V, such that
system (5) provides good approximation of the initial system (1). For
the linear case (i.e. if f(-) is a linear transformation), there are a number
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Figure 2: Micromachined fixed-fixed heam (following Huang et
al. [8D).

The other example is a micromachined fixed-fixed beam structure shown
in Figure 2. Following Huang et al. [8], the dynamic behavior of this
coupled electro-mechanical-fluid system can be modeled with 1D Eu-

of methods for determining V. They include: selecting vectors from or-
thogonalized time-series data [8], computing singular vectors of the un-
derlying differential equation Hankel operator [6] or examining Krylov
subspaces [1], [2], [4], [7], [10], [11], [12], [15], [17]. The approach
based on using time-series data extends directly to the nonlinear cases,
and the Hankel operator and Krylov subspace based strategies can be ex-
tended to the nonlinear case using linearization (Taylor’s expansions) of
the nonlinear system function f(-) (1], [2], [11], [17].

The other key issue in applying formulation (5) for reduced order model-

ler’s beam equation and 2D Reynolds’ squeeze film damping equation
given below:
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where x, y and z are as shown in Figure 2, E is Young’s modulus, 7 is the
moment of inertia of the beam, S is the stress coefficient, p is the density,
Daq 1s the ambient pressure, u is the air viscosity, K is the Knudsen num-
ber, w is the width of the beam in y direction, ¥ = u(x,) is the height
of the beam above the substrate, and p(x,y,t) is the pressure distribution

in the fluid below the beam. The electrostatic force is approximated as-
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suming nearly parallel plates and is given by Fejee = — 5,

the applied voltage.

where v is

Spatial discretization of equations (2) and (3) using a standard finite-
difference scheme (cf. [17]) leads to a large nonlinear dynamic system
in form (1). In this case the state vector x consists of heights of the beam
above the substrate (#) computed at the discrete grid points, their time
derivatives, and the values of pressure below the beam. In this case we
select our output y(¢) as the deflection of the center of the beam from the
equilibrium point (y(¢) = r(¢) — cf. Figure 2).

3. Model Order Reduction for nonlinear systems

Suppose the initial dynamic system (1) is of order N, i.e. is described by
N states. The main goal of model order reduction techniques is to gener-
ate a model of this system with g states (where g < N), while preserving
accurately the input/output behavior of the original system. Virtually all
the numerical model order reduction strategies are based on the concept
of projecting the states of the initial system onto a suitably selected re-
duced order state space. This may also be viewed as performing a change
of variables:

x=Vz €Y

where z is a ¢g-th order projection of the state x (of order N) in the reduced
order space and V is an N X ¢ orthonormal matrix representing a trans-
formation from the original to the reduced state space. In other words,
columns of V define an orthonormal basis which spans the reduced order
state space.

Substituting (4) in (1) and multiplying the first of the resulting equations

ing is finding a representation of VT f(V-) which allows low-cost storage
and fast evaluation. Suppose, N = 100,000 and ¢ = 10. If no approxima-
tions are made to the nonlinear function f(-), then computing V7 f(Vz)
requires O{100,000) operations and is too costly. The simplest approx-
imation for f{-}, which allows O{g) (not O(N)) storage and evaluation
of VT f(V-) is based on Taylor’s expansion around the initial state (equi-
librium point) xg:

100 = F050) + Aol —x0) + 3 Wolx—30) ® ()

where ® is the Kronecker product, and Ag and Wy are, respectively, the
Jacobian and the Hessian of f(-) evaluated at the initial state xy. This ap-
proach leads to the following reduced order models proposed in [1], [2],
[11] and [17]. For the linear case, the reduced order model (5) becomes:

{ dz—([[) = VT f(x0) +Agrz+ VT Bu(r) 6)
¥(r) =CTVz(r)

where Ay, = VT AV is a g x g matrix. The quadratic reduced order
model is given by [11]%:

{ df1_(rt) =V f(x) +Aorz+ 5 Wor(202) + VT Bu(r) )
V0 T

where Wy, = VI Wy(V ®V) is a g x ¢ matrix. In the above formulations,
due to the fact that the reduced matrices are typically dense and must
be represented explicitly, the cost of computing VT f(Vz) term and the
cost of storing the reduced matrices Ay, (Ag, and Wy, in the quadratic
case) are O(qz) (in the linear case) and 0(q3) (in the quadratic case).
Therefore, although the method based on Taylor’s expansions may be
extended to higher orders of nonlinearities [11], this approach is limited
in practice to cubic expansions, due to exponentially growing memory
and computational costs. For instance, if we consider quartic expansion
of order g = 10, then the memory storage requirement exceeds ¢° =
100,000 elements, and the computational cost is O(g>). In most cases it
becomes inefficient to use so computationally expensive reduced order
models.

4. Piecewise-linear model order reduction

As described in the previous section, reduced order models based on
Taylor series expansion become prohibitively expensive when the order
of included nonlinearity becomes large. On the other hand, a simple lin-
earized reduced order model (6), although computationally inexpensive,

2 An alternative formulation of the quadratic reduced order model is pre-
sented in [1]. Both formulations give almost identical results.



may be applied only to weakly nonlinear systems and is usually valid for
a very limited range of inputs [17]. This leads us to proposing an ap-
proach towards model order reduction based on quasi-piecewise-linear
approximations of nonlinear systems. The idea is to represent a system
as a combination of linear models, generated at different linearization
points in the state space (i.e. different states of the initial nonlinear sys-
tem). The key issue in this approach is that we will be considering mul-
tiple linearizations around suitably selected states of the system, instead
on relying on a single expansion around the initial state.
4.1 Piecewise-linear representation
Let us assume we have generated s linearized models of the nonlinear
system (1), with expansions around states xg, ... ,X;—:

dx
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dt
where xg is the initial state of the system and A; are the Jacobians of f(-)
evaluated at states x;. We now consider a weighted combination of the
above models:

s—1
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where w;(x) are weights depending on state x. (We assume that, for
all x, Zf;& wi{x) = 1.) The choice of weights is discussed later on in
this section. Assuming we have already generated a g-th order basis V
(cf. (4)) we may consider the following reduced order representation of
system (8):
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and [z9,21,... ,2s—1] are representations of linearization points xg, ... ,X;_|
in the reduced basis:
T T T
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Finally, w(z) = [wo(z) ... ws—1(z}] is a vector of weights (norm ||w(z)|| =
1 for all z). At this point we need to find a procedure for computing
the weights w;, given current state z and the linearization points z;. We
assume that weights w; for the reduced models A,; are computed based
on the information about the distances ||z — z;|| of the linearization points
from the current state z. We require that the ‘dominant’ model A - is the
one corresponding to the linearization point z; which is the closest to the
current state of the system.

The following procedure of computing w; ensures that the above require-
ment is satisfied:

1. Fori=0,...,(s— 1) compute: d; = ||z — z|>.
(Alternatively we may take d; = ||C-(z — zi)]|2-)

2. Compute m=min{d; : i=0,... (s— 1)}.
3. Fori=0,...,(s— 1) compute w; = (exp{d;)/m))~%.

4. Normalize w;.

One may note that, in the above procedure, the distribution of weights
changes rather ‘sharply’ as the current state z evolves in the state space,
i.e. once e.g. z; becomes the point closest to z, then weight w; almost
immediately becomes 1. This provides a rationale for referring to model

Figure 3: Generation of the linearized models along a trajectory of
a nonlinear system in a 2D state space.

(9) as a piecewise-linear reduced order model of nonlinear system (1).
Clearly, the procedure presented above provides only an example. Nev-
ertheless, as shown in the following sections, it may be effectively used
in practice.

4.2 Generation of the piecewise-linear model

So far it has not been discussed how to generate the weighted model
given by (8) or, more specifically, how to select linearization points x;.
We may assume that linearization of a nonlinear system, generated at
state x; is valid or accurate for a given state x if this state is ‘close enough’
to the linearization point x;, i.c. ||x—x;|| < €, which means that x lies
within a ball (in an N-dimensional space) of radius € and centered at
x;. Suppose we would like to cover an N-dimensional state space with
such balls. (Therefore assuring that for any state we will find a valid
linearized model.) Then, assuming e.g. that the state space is an N-
dimensional hypercube: [0;1] x ...[0;1] € RV, N = 1000 and ¢ = 0.1,
the total number of models to be generated would equal roughly 10'900,
This is clearly a totally infeasible approach, due to enormous memory
and computational costs.

Instead of finding linearized models covering the entire N-dimensional
state space we propose to generate a collection of models along a single,
fixed trajectory of the system.> This means we generate a trajectory by
performing a single simulation of the nonlinear system for a fixed ‘train-
ing’ input. (In fact, we may perform a faster approximate simulation,
which is discussed later on in this section.) This procedure is depicted in
Figure 3. Given a training input signal u(r) and initial state xo we pro-
ceed as follows: 1) We generate a linearized model around state x; (ini-
tially i = 0); 2) We simulate the behavior of the nonlinear system while
||x — x;|| < 8, i.e. while the current state x is close enough to the last lin-
earization point; 3) We take a new linearization point x| =x (i:=i+1)
and return to step 1). In this procedure we may fix the maximum number
of models we want to generate. It should be stressed that this piecewise-
linear approach is different from methods presented e.g. in [3] or [9],
where piecewise-linear approximations of individual elements of the cir-
cuit (e.g. diodes or transistors) are considered and a very large collection
of linear models is used. In our algorithm, the piecewise-linear approx-
imation applies to a trajectory of the entire nonlinear system, and there-
fore the number of linearized models may be kept small.

3The idea of using a collection of linearized models along e.g. an equilib-
rium manifold or a given trajectory is also used in design of gain sched-
uled controllers for nonlinear systems — cf. [14], [16].
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Figure 4: Comparison of system response (micromachined beam
example) computed with linear, quadratic and piecewise-linear re-
duced order models (g = 40 and g = 41) to the step input voltage
u(t) =9 (t > 0). The piecewise-linear model was generated for the
7-volt step input voltage.

As illustrated in Figure 3, the procedure proposed above allows one to
‘cover with models’ only the part of the state-space located along the
‘training’ trajectory (curve A). Let us assume that the reduced order
model (5) is composed of linear models generated along this trajectory.
If a certain system’s trajectory, corresponding to a given input signal u,
lies within the region of the state space covered by these models, we ex-
pect that the constructed piecewise-linear model (5) will suitably approx-
imate the input/output behavior of the initial nonlinear system (cf. curve
B).* It should also be stressed at this point that, although the consid-
ered trajectory stays close to the ‘training’ trajectory in the state space,
the corresponding input signal can be dynamically very different from
the ‘training’ input. In other words, we may apply the piecewise-linear
model for inputs which are significantly different from the ‘training’ in-
put, provided the corresponding trajectories stay in the region of the state
space covered by the linearized models (cf. results in Section 5).

When the input signal causes the trajectory to leave the region covered
by the linearized models (cf. curves C and D in Figure 3), then the
piecewise-linear model (5) will most likely nor provide a significantly
better approximation to the nonlinear system than a simple linear re-
duced model (6). This situation has been illustrated in Fig. 4. Due to a
difference in amplitudes between the ‘training’ input (u(¢) = 77) and the
testing input (u(r) = 9?) the piecewise-linear model is no longer able to
reproduce accurately the response of the nonlinear system. Now, if we
generate the piecewise-linear model with a 9-volt training input (cf. Fig-
ure 5), then this model is able to reproduce accurately the nonlinear re-
sponse. One should note that in this case the piecewise-linear model
is able to accurately model the dynamics of a highly-nonlinear pull-in
effect (the beam is pulled down to the substrate), which is of particular
importance in applications [8]. One may note from the graph that the lin-
ear model is not able to reproduce this phenomenon, while the quadratic
model is unable to reproduce the correct dynamics. Still, this example
shows that if the piecewise-linear model is to be used for inputs with
very different scales one should consider more complicated schemes of
generating linearized models, based e.g. on multiple training inputs.

4The additional rationale for this observation is that in typical situations
the dimensions of observable and controllable spaces of a dynamic sys-
tem are much smaller than the dimension of its state space. (This is
expected to be true for the examples of nonlinear SISO dynamic systems
presented in Section 2.)
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Figure 5: Comparison of system response (micromachined beam
example) computed with linear, quadratic and piecewise-linear re-
duced order models (¢ = 40 and ¢ = 41) to the step input voltage
u(t) =9 (t > 0). The piecewise-linear model was generated for the
9-volt step input voltage.

One may note that the proposed method of generating the piecewise-
linear model of a nonlinear dynamic system requires performing simu-
lation of the initial nonlinear system (1) which may be very costly, due
to the initial size of the problem. In order to reduce the computational
effort we note that it is unnecessary to compute the exact trajectory for
the ‘training’ input in order to generate a collection of linearized mod-
els. In fact it suffices to compute an approximate trajectory and obtain
only approximate linearization points. This leads us to a fast simulation
algorithm, which may be summarized in the following points:> 1) Us-
ing basis V we construct a reduced order linearized model around state
x; (initially i = 0); 2) We simulate the reduced order linear system ob-
tained in Step 1 while |[Vz—x;|| < &, i.e. when the current reduced order
state z is close enough to the last linearization point; 3) We take a new
linearization point x;; | = Vz (i := i+ 1) and return to Step 1.°

Matrix V, whose columns define the reduced order basis used to rep-
resent approximately state vectors of the system, is computed with a
procedure described in the next section.

4.3 Generation of the reduced basis
The reduced order basis V = [vy,...v,], where v; € R¥, is obtained in the
following three steps:

1. We consider the linearization of the dynamic system (1) around
the initial state xp:

dx
= ( X0) +Ag(x —xg) + Bu(r)
{ (1) = (1) 1o

where Ag is the Jacobian of f(x), evaluated at x = xy. We construct
an orthogonal basis V = {v|,... ,v;} in the I-th order Krylov
subspace:

Ki(Ay" Ay ' B) = span{A; 'B,... ,A; B}, (11)

SDetails of this fast simulation algorithm, in the context of model order
reduction, are to be presented in a forthcoming journal paper.

SThis approach shares features with reduced basis methods for solving
parabolic problems [5]



using the Arnoldi algorithm [17] (or block Arnoldi algorithm [13]
if the number of inputs M > 1). This choice of basis V ensures that
[ moments of the transfer function of the reduced order linearized
model match / moments of the transfer function for the original
linearized model (10) [11].

2. We orthonormalize the initial state vector xy with respect to the
columns of V and obtain vector vjy4+ . To this end we may use
e.g. the SVD algorithm.

3. We take V as aunion of V and vipzy1: V = [Viviare]-

So, the final size of the reduced basis equals ¢ = IM + 1. The last two
steps ensure that we will be able to represent exactly the initial state xg
in the reduced basis V. (Note that if the initial state of the system is zero,
then steps 2 and 3 become unnecessary.) Exact representation of the
initial state guarantees that we will correctly start the fast approximate
simulation of the nonlinear system in the reduced order space.’

5. Computational results

This section presents results of computations using piecewise-linear re-
duced order models, obtained with the MOR technique proposed in Sec-
tion 4. Our main goal is to find out whether this technique does really
generate a model of our system. Let us recall that, in the proposed MOR
algorithm, the model (which basically consists of a collection of reduced
order ¢ X g matrices Aoy, Ay ...y Y] is obtained by performing a
fast simulation for a given training input signal. In order to show that
we have indeed generated a model we should verify that it gives correct
outputs for not only for the input it was generated with, but also for other
inputs.

This verification was done experimentally. We considered our nonlin-
ear circuit for N = 100 and generated a reduced order piecewise-linear
model of order g = 10 using a step input i(r) = H(r — 3). For this ex-
ample, the linearization point changed 4 times, therefore our model con-
sisted of 5 reduced order matrices Ay, ..., A4,. The reduced order model
was tested for a cosinusoidal input i(¢) = (cos(2mt/10) + 1)/2. The re-
sults are shown in Figure 6. One may note that the output voltage ob-
tained with the piecewise-linear reduced order model accurately approx-
imates the reference voltage (the curves overlap almost perfectly).

Figure 7 provides an analogous test for the example of a micromachined
fixed-fixed beam described in Section 2. In this case the reduced order
model (¢ = 41) was generated for the 8-volt step training input voltage.
(The model used 9 linearization points.) Then it was tested for a cosinu-
soidal input with a 7-volt amplitude. Once again, the transient obtained
with the proposed model matches very accurately the reference result
obtained with the full nonlinear model of order N = 880.

Figures 6 and 7 also provide a comparison of the proposed piecewise-
linear reduced order model with linear and quadratic reduced models,
generated using methods described in [1], [11] and [17]. It is appar-
ent from the graphs that the piecewise-linear reduced order model gives
significantly more accurate results than the linear and quadratic reduced
order models using Taylor’s expansions around the initial state. It should
be stressed at this point that all models (linear, quadratic and piecewise-
linear) were of the same order and, moreover, applied the same basis V
(obtained with the procedure described in Section 4.3).

7 Above we presented only the simplest (and the least computationally
expensive) algorithm of generating the reduced basis V. One may easily
extend this scheme to construct a basis which includes e.g. states used as
subsequent linearization points and basis vectors for Krylov subspaces
corresponding to these states.
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Figure 6: Comparison of system response (nomlinear circuit ex-
ample) computed with linear, quadratic and piecewise-linear re-
duced order models (of order ¢ = 10) for the input current i(t) =
(cos(2mt/10)+ 1) /2.
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Figure 7: Comparison of system response (micromachined beam
example) computed with linear, quadratic and piecewise-linear re-
duced order models (of order ¢ = 40 and g = 41) for the input volt-
age u(t) = 7cos(4nz). The piecewise-linear model was generated for
the 8-volt step input voltage.

Table 1 shows a comparison of performance of the discussed MOR tech-
niques and the reduced order solvers. All the algorithms were imple-
mented in Matlab. The tests were performed in a Linux workstation
with Pentium III Xeon processor. One may note that performance for
linear and piecewise-linear MOR algorithms is comparable. The gener-
ation of the quadratic model is significantly more expensive, due to the
costly reduction of the Hessian matrix, which requires 4> computations
of the matrix-vector product W (x ®x), where W is a full order N x N2
Hessian matrix (in this case represented implicitly — cf. [1]).

The memory complexity of the piecewise-linear reduced order solver is
O(sq?), where s is the number of linearization points. Consequently,
the memory cost is roughly s times larger than for the linear reduced
order simulator (for which this cost is O(g?)). The cost of the quadratic
reduced order solver is O(q?) (the reduced order Hessian must be stored
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Table 1: Comparison of the times of generation of the reduced model
and reduced order simulations for the quadratic and piecewise-
linear MOR techniques. The initial problem had size N = 1500. The
reduced model had size ¢ = 30. The tests were run for the nonlinear
circuit example.

explicitly as a matrix), so if s & ¢, then the memory requirements for the
piecewise-linear solver are approximately the same as for the quadratic
solver. For our examples (cf. Figures 6 and 7), s =5~ ¢g/2 and s =9 ~
q/4, respectively, so in fact the memory used by the piecewise-lincar
algorithm equaled roughly only half (and a quarter) of the memory used
by the quadratic solver.

6. Conclusions

In this paper we have proposed an efficient numerical approach towards
automatic model order reduction and simulation of nonlinear systems.
The results obtained for the examples of a nonlinear circuit and a mi-
cromachined beam indicate that this method provides good accuracy
for different applications. The method also proves to be characterized
by low computational and memory requirements, therefore providing a
cost-efficient alternative for the nonlinear MOR techniques based on lin-
ear and quadratic models.

Although the algorithm in its current state has proved to be very effec-
tive, a number of its aspects require further investigation, including the
procedure of merging (weighting) the linearized models or the method of
selecting linearization points. There are also many possible extensions
of the presented technique, which may include application of multiple
reduced bases (instead of a single basis generated at the initial state) in
the reduced order piecewise-linear simulators or developing schemes for
automatic model generation with multiple ‘training’ inputs, which may
allow one to extend the validity of the quasi-piecewise-linear reduced
order model to inputs with different scales of amplitudes.

It should be stressed that application of the discussed piecewise-linear
reduced order approach is not limited to the class of SISO or MIMO dy-
namic systems found in circuit or MEMS modeling. It may be easily
extended for use in macromodeling of second order systems arising in
e.g. coupled domain problems involving micromachined electromechan-
ical devices.

This work was sponsored by the DARPA composite CAD program, the
NSF program in computer-aided design, the DARPA muri program, and
grants from Synopsys, Compaq and Intel.
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