RELAX2: A MODIFIED WAVEFORM RELAXATION APPROACH
TO THE SIMULATION OF MOS DIGITAL CIRCUITS

J. White and A L. Sangiovanni-Vincentelli
Department of EECS
University of California at Berkeley
Berkeley, CA 9472Q

Abstract: Waveform Relaxation (¥) algorithms have beza proven
to be effective in the transient analysis of large scale integrated
circuits. A new waveform relaxation simulater for EG3 digital cir-
cuits, RELAX?, is described. Several speed-up techriques included
in RELAX2, such as adjusting the length of the intsval of simula-
tion, using simpler models in the first few iterations, and allowing
locser timestep control in the first few iteratians, are also
presented.
INTRODUCTION

Waveform Relaxation (WR) is a family of relaxation-based &lge-
rithms for the solution of large scale systems of mixed algebraic-
differential equations{1,2]. A particular algerithm of the WR family,
the "Gauss-Seidel” WR algorithm, was successfully implemented in
RELAX, an experimental simulator for MOS digital circuits[3]. This
algorithm is guaranteed to converge to the solution of the circuit
equations for a large class of circuits]1,2] and expleits ths almaost
unidirectional properties of the besic components, logic gates, of
digital circuits.

Due to their favorable numerical properties, WR algorithms
have captured considerable attention. WR algorithms have bezen
applied to the solution of piecewise-linear difierential equations{4],
they have been used in mixed-mode simulators{5], and special pur-
pose multi-processor architecture is being studied to implement
the WR algorithm.

In this paper we give a brief outline of the WR method, fol-
lowed by a description of of the RELAX2 program, a new WR simula-
tor for MOS digital circuits. We then discuss the simulation of cir-
cuits that contain logical feedback loops, and explain why adjusting
the length of the interval of simulation improves the rate of con-
vergence of the WR method. Results of the simulation of a test cir-
cuit with logic feedback using RELAX2 arc presented. [inaliy, two
new speed-up techniques tested using RELAX2, using simpler
models in the first few iterations, and allowing locser timestep con-
trol in the first few iterations, are presented along with test
results.

1. AN OUTLINE OF THE WAVEFORM RELAXATION ALGORITHM

We start with a simple illustrative example, and then give the
general "Gauss-Seidel” algorithm in the WR family. A more detailed
and complete description of these techniques is available in {1,2].
Consider the 1st order two dimensional differential equation in x(t)

€ R¥ont € [0,T].

Si(z, T t) (1.1a)

z,(0) = 7y

z

Zy = fafzy 2o, t)

The basic idea of the "Gauss-Seidel" waveform relaxation algorithm
is to fix the waveform z:[0, 7] » R and solve (2.1a) as a cne
dimensional differential equation in z;(*). The solution thus
obtained for z, can then be substituted into (2.1b) which will
reduce to another first order differential equation in one variable,
Z,. We then return to (2.1a) and repeat the procedure.

In this fashion, an iterative algorithm has been constructed.
It replaces the problem of solving a differential equation in two
variables by one of solving a sequence of differential equations in
one variable. As described above, the waveform relaxation algo-

z22(0) = T (1.1b)

CH1845-7/83/0000-0756 $1.00 © 1983 IEEE

756

rithm can been seen as an analogue of the Gauss-Seidel technique
for sclving nonlinear algebraic equations. Here, however, our unk-
nowns are waveforms (elements of a function space), rather than
real variables. In this sense, the algorithm is a technique for time
domain decoupling of differential equations.

WR algorithms applied to circuits can have several formula-
tions. Here we present the "Gauss-Seidel" WR algorithm for solving
a the following system of differential equations.

() z(e).u(t)) =0 z(0) = zo (12)
where x(t) € R* ont € [0T]; u(t) € IR" ont € [0,T], piece-

wise continuous; and f: R"zIR®*zR" —-» IR" is a continuous map,
and is Lipschitz continuous in x(t).

WR ALGORITHM TO ANALYZE (1.1) FROM t =0TOt=T

Comments: The superscript k denotes the iteration count,

the subscript denotes the component index of a vector.

Step 0: (Initialization)
Set k=0 and make an initial guess of the waveform
z%t); t € [0,7T] such that 29%0) = =z,

Step 1: (Iteration)
Repeat
k=k+1
Fori=1,2,..,n

K,
Solve for z *(t), t € [0,T] from
fizfo.. 2t xt{‘;}l-m--ﬁ_{:_l, -
26, xf, k. gk, uw) =0
Until convergence.

2. RELAX2 PROGRAM STRUCTURE

Node-by-node decomposition, suggested by the above
waveform relaxation algorithm, is a poor choice for large digital
circuits. Digital circuits are usually made up of many subcircuits,
each with a few tightly coupled nodes, (flip-flops or gates, for exam-
ple) but these subcircuits are loosely coupled to each other, It is
therefore both natural and advantageous (convergence is faster) to
decompose a large digital system along subcircuit boundaries. The
RELAX2 program insists the user define his large circuit by first
defining subcircuits, such as gates or flip-flops, and then specifying
how subcircuits are connected. A user may not refer to a
transistor when aescribing his large circuit, but can define the
transistor as a subeircuit and then refer to that subcircuit in the
large circuit description.

Subcircuits may be made of any number of MOS transistors
and grounded capacitors, and may contain any number of 1_10des.
The user must explicitly state which nodes in the subcircuit can
connect to other subcircuits. These nodes are refered to as exter-
pal nodes. All other nodes in the subcircuit are internal nodes.
The user must also specify the directionality of his circuit by indi-
cating which of the external nodes are outputs, and which are
inputs. This information is used to determine the order of subcir-
cuit processing, or the scheduling, which will be described later.

b
d
U
L

wws ™ T

e e et e e e mt v - N Y PN e

Once the subcircuits are defined, the large circuit is defined
by describing the interconnection of subcircuits. The large circuit,
desciption may also contain grounded capacitors, which allows the
user to insert parasitic capacitances to model delays along long
wires.

The RELAX2 program generates a device list "master” for
each of the defined subcircuits. There is an entry in the device list
master for each transistor or capacitor in the subcircuit. The
entry contains a node number assignment and a space for a
pointer to a node waveform for each terminal in the device. The
subcircuit "masters” are stored on a simple linked list.

A copy of a subcircuit master is generated for each reference
to-a subcircuit in the large circuit description. Each time a copy
of a master is made, the node waveform pointers must be defined.
This process is refered to as subcircuit instantiation, and the sub-
circuit device list copies are refered to as subcircuit instances. If
the node is an external node, and if space for that node waveform
has already been allocated because the node was referenced by
previously instantiated subcircuit, then a pointer to that space is
placed in the device list entry. If not, space for the waveform is
allocated and then the pointer to that space is placed in the entry.
If the node is .an internal node, no other subeircuit instance can
reference the node, so space for the internal node waveform is
immediately allocated, and a pointer to that space is placed in the
entry.

Often designers use wired-or logic, and they may describe
this by connecting together outputs from different subeircuits.
Pass transistors that reference the same node may also be
described as separate subcircuits that share an output node. The
RELAX2 program must detect this consiruction and convert tte
several subcircuits involved into one collection of subcircuits.
These collections are refered to as circuit lumps. Note that no
two lumps will have an output node in common; they may however
ghare input nodes.

<3

Once the instantiation of subcircuit@‘as been completed, and
subcircuit instances that share a common output have been
lumped together, the loading effects of other lumps must be incor-
porated into each lump. A lump that has input nodes that are
common to a given lump’s output node is refered to as a load lump
of the given lump. One approach to incorporating the loading
effects of load lumps would be to make circuits comprised of a
lump and all its load lumps This would create very large circuits,
which is contrary to the intent of this decomposition method.
Therefore, onlv the load devices are extracted from the load
lumps, and only these load devices are appended to the original
lump. This is refered to as load extraction. Given the structure of
the device list generated for each of the subcircuit instances, it is
easy to extract the load devices. The device entry in a circuit
lump contains pointers to its node waveforms, so copying the dev-
ice entry mantains the reference to the device's node waveforms.

A description of the algorithm is the following:

: Start with an arbitrary circuit lump

: Pick an output external node of that lump

: Visit all the circuit lumps that share that external
output node (note that this must be an input node
for other lumps)

: Copy only the device entries in the other lumps
that have a terminal connected to the that external
node.

Append the copied device entries to the original
circuit lump.

Step 4:

Pick the next external output node from the original
lump and Go to Step 2. If there are no more pick the
next circuit lump and go to Step 1.

Step 5:

Once extraction has been completed, the order in which the
node waveforms for-the circuit lumps will be solved for must be
determined. This is an important because the speed of conver-

757

gence of the WR method is strongly dependent on how well this
order follows the directionality of the circuit. As the subcircuit
definitions specify input and output nodes, it is easy to follow the
directionality of the circuit unless there are feedback loops. If
there are feedback loops, the loops are temporarily broken at an
arbitrary point, and the ordering is completed. The actual order-
ing algorithm used is quite straightforward and is similar to the
one used in the original RELAX program[2].

Finally the RELAX2 program feeds the circuit lumps to a stan-
dard SPICE-like[6] circuit simulator which is capable of handling
circuits with an arbitrary number of nodes. This simulator uses a
first order predictor-corrector numerical integration algorithm
{Backward Euler) with local truncation error timestep control[7].
Because MOS transistors, grounded voltage sources, and capacitors
are usually the only elements used in MOS digital circuits, the
simulator uses nodal analysis rather than the more complicated
and more general modified nodal analysis[8]. Each circuit Jump is
simulated in the order determined by scheduling algorithm, and
the entire schedule is repeated until the node voltage waveforms
for each of the subcircuits converges.

3. HANDLING CIRCUITS WITH LOGIC FEEDBACK LOOPS IN RELAX2

Digital circuits can be broken up into two very broad classes,
circuits with logic feedback loops (finite state machines,
asynchronous circuits, digital oscillators) and circuits without
logic feedback loops (most combinational logic, programmable
logic arrays). Our experience simulating MOS digital circuits using
RELAX2 shows that most MOS digital circuits without lcgic feed-
back loops converge in less than ten iterations. However, circuits
with logic feedback loops may take many more iteraticns to con-
verge, and tle number of iterations required is proportional to the
length of the simulation interval. In this section we exsmire the
problem of circuits with logic feedback. We start with a simple cir-
cuit to illustrate the feedback problem; logic feedback is then
defined precisely; and finally the waveform relaxation algorithm is
applied te a simplified linear system to provide insight into the
problem and to motivate a solution.

We used the WR algorithm to decompose and simulate the cir-
cuit in fig. 3.1, cross-coupled nand gates, which contains a tight
logic feedback loop. (This was done to demonstrate the ‘difficulty
of simulating circuits with logic feedback using waveform relaxa-
tion. Normally a small tightly coupled circuit would not be decom-
posed). The node voltage waveforms of this circuit are graphed in
figures 3.2a,b,c at three different itsraticns of the waveform relax-
ation. The graphs demonstrate a unique property of the WR algo-
rithm when applied to circuits with logic feedback: the error is not
reduced at every time point in the waveform. Instead, each itera-
tion lengthens the interval of time, starting from zero, for which
the waveform is correct.

The above behavior is consistant with the convergence
theorems for the WR method. The convergence of the WR method
was proved in the following norm on function spaces

maxie,rje || ()]

where ¥ >0, f(t) € R®, and || || is any norm on IR®, Note that
[if (£)]| can increase as e without increasing the value of this
function space norm. If {(t) grows slowly, or is bounded, it may be
possible to reduce the function space norm by reducing ||f (t)r] on
some bounded interval of t, where this interval increases as the
function space norm decreases. The waveforms in the above cir-
cuit converge in just this way; the fundtion space nerm is
decreased after every iteration of the WR algorithm because
significant errors are reduced over larger and larger intervals of t.

Not all digital circuits converge in this manner, however. Cir-
cuits with pass transistors, for example, converge uniformly
throughout the interval of simulation (see example below). The
difference in the case of circuits with logic feedback is that there
is "gain in the loop”, which causes any sfnall error to grow very
quickly, until it is limited by the power supply rails.

We will now define logic feedback in terms of the following -
general nonlinear dynamical system of equations that describe the
digital circuit.

F(Z(t), z(t), u(t)) = 0 (3.1)

q:(O) = zp

where x(t) € IR® on t € [0,T]; u(t) €IR" on t € [0.T], piecewise
continuous; and £ R*zIR"zR" ~» R® is a continuous map. In
our case x(t) is the vector of node voltages of the circuit, and u(t)
is the vector of input voltages.

Definition 3.1 Suppose f is Lipschitz continuous in x(t) for
all z(t) € R™™", then we can definea G € IR™™ be such
that g;; is the minimum value that satisfies

gy llzft -z =
Wl O (2o za 2z,)T (),)
Fil O (zoza . zf 3,)70 (),)]

forall z}, zf € R

3.2

Let L be a lower triangular matrix, and U a strictly upper
triangular matrix such that L +oU = G°, where ' is
any permutation of G. A circuit with logic feedback is
defined as one in which there exists no G* (defined above)
such that

Liduy forall i,j €[1,...,n] (3.3

Kemark 3.1 The matrix G describes, in the worst case, how
tightly the nodes of the dynamical system are tied togeth-
er. The "gain" in a logical feedback loop would produce
large symmetric off-diagonal terms in G, and both these
off-diagonal terms could not be forced into the lower tri-
angular matrix by reordering the rows in G. m

In order to gain some insight into the behavior of the WR algo-
rithm on nonlinear circuits with logic feedback, we will analyze a
linear system for which we can prove some thecrems. Consider
using the Gauss-Seidel WR algorithm to solve a linear circuit which
has grounded capacitors at every node. The equations for the sys-
tem are

z(t) = -ClGx(t) + Bu(t) z(0) = z, (34)
where x(t) € R ont € [0,T; u(t) € R ont € [0,T], piece-
wise continuous; C,G € IR™ ; B € IR, C is a capacitance
matrix; G is a conductance matrix; and B is an input matrix. In this
case we assume C is diagonal, therefore this linear system does not
include floating capacitors. The equation of the WR algorithm
iteration for this system is

Z(EF = Lz(t)* + Uz(t) + Bu(t) z(0) = z,(35)

where L is a lower triangular atrix, U is a strictly upper triangu-

lar matrix and L + U = —C7!G. We have the following
theorem| 10]:

Thearem 3.1: If the diagonal terms of L are strictly nega-
tive' then we have the following bound

maxpo 7|z *1(t) - z(t)]| = (3.6)

(1-e™") (1/v Jeond (S)||U|max, 1]l ()* - z(t)]]

where || || is the L. norm on IR® or the induced £ morm
on IR™", v is the absolute value of the least negative diag-
onal element of L, cond(S) is the condition number of the
matrix of eigenvectors of L, x(t) is the solution to equation
3.4, and z¥, z**1(t) are the results of the k and k+1 itera-
tions of the WR algorithm (equation 3.5).

Definition 3.2 Define K(T) by
K(T) = (1-e™T) (1/v Joond(S)||U].

The diagonal terms of L are strictly negative if the linear cir-
cuit described by the conductance matrix G, and the capacitance
matrix C, has only positive conductances, and some positive capa-
citance to ground at each node.

758

Then if K(T) < 1 we say that the WR algorithm uniformly
decreases the maximum errcr over the interval [0,T] at
each iteration.

Corollary 3.1: If the diagonal elements of L are negative
then there exists some T~ > 0, such that K(T") < 1.

Femark 3.2 Corollary 3.1 follows immediately from the
fact that (1-e —7T) goes to zero as T goes to zero. -

Corollary 3.2: If (1/v Jeond(S)[|U|{ < 1 then at each
iteration the WR algorithm uniformly decreases the max-
imum error over the interval [0, o).

Remark 3.2: Consider the shift register example in figure
3.3a This is an example of a system for which the max-
imum error of the WR algorithm decreases uniformly over
the interval [O.m) As the circled regions of figure 3.3b
and 3.3c show, the errors of the first iteration (3.3b) are
reduced throughout the waveform in the second
iteration(3.3¢c). n

If the circuit described by equation 3.4 has logic feedback
according to definition 3.1, then no matter how the equations of 3.4
are reordered, the assumptions of coroliary 3.2 will not be satisfied
and the WR algorithm will not converge as described in definition
3.2 over the interval [0,). Given corollary 3.1, we can find a T°
so that the WR algorithm will converge as in 3.1 for the interval
[0,T°] (Note that this T° may be quite small, and it is inversely
proportional to how tightly coupled the circuit is). This suggests
that the interval of simulation should be broken into "windows", so
that the relaxation will converge as in definition 3.2 over the entire
window. If we reconsider the cross-coupled nand gate circuit men-
tione%bcve, and "window" the simulation using RELAX2, conver-
gence™® quite rapid (see table 3.1). There is a trade-off, however,
as table 3.1 shows. As the window size gets smaller scme of the
advantages of waveform relaxation are lost. One cannct take
advantage of a digital circuit’s natural latency over the entire
waveform, but only in that window; the scheduling overhead
increases when the windows become smaller, as each circuit lump

.must be scheduled once for each window; and if the windows are

made very small, timesteps chosen to calculate the waveforms will
be limited by the window size rather than by the local truncation
error, and unnecessary calculations will be performed.

4. SPEED-UP TECHNIQUES BASFE. ON CHANGING CALCULATIONS
WITH THE ITERATION IN RELAX2

When using iterative decompesition methods for solving sys-
tems of nonlinear equations, it inay be possible to reduce the cal-
culations required by not solving the decomposed nonlinear equa-
tions exactly at each iteration. In some cases the convergence of
the algorithm is not affected by the inaccurate solutions. In the
Ganss-Seidel-Newton method[§], for example, a system of nen-
linear algebriac equations is solved by decomposing the system
into nonlinear equations in one unknown. But, at each iteration
these equations are only solved approximately by performing one
iteration of the Newton-Raphson method. Yet it has been shown
that if the Newton-Raphson and the Gauss-Seidel methods will con-
verge for a problem when applied independently, the mixed Gauss-
Seidel-Newton method will also converge[9]. We applied this idea
to the WR methed for solving MOS digital circuits. In our case we
use simpler approximate methods for calculating the node
waveforms for the first few iterations, and switch to more complex
and more exact methods for the last few iterations. The conver-
gence of this class of methods for WR has been proven[2].

One way of simplifying the calculation of the node waveforms
is to use a simple model for the MOS devices, and then switch to
the Shichman-Hodges model as the waveforms approach conver-
gence. Our simple device model is a resistor in series with a
switch, where the size of the resistance is scaled with the device
size. In the SPICE program(8] the Shichman-Hodges model is
referred to as the level one MOS device model, so we refer to our
simple model as the level zero model. Using such a model in the
calculation of waveforms is not straightforward, because the equa-
tions describing the model can not be solved easily using the
Newton-Raphson method. The Newton-Raphson method often gets
"caught”; that is it will oscillate about the point where the levt_al
zero model’s switch changes state. One solution to this problem is

R ———

SIS

i
!

not to carry out the Newton-Raplson method to convergance but
to do only one iteration. The result is that the calculation of the
waveforms using the level zero model is quite fast, but only approx-
imate, even if the level zero model is assumed to be correct. The
results using the level zero model and then switching to the level
one model were dissappointing (table 4.1). In circuits without logic
feedback, the level zero model did not provide a better guess for
the waveforms than one iteration using level one models. It is pos-
sible that we need to add another term to our level zerc model to
make it smoother. Then we can use the Newton-Raphson algo-
rithm, and achieve the accuracy required to produce a useful first
guess for the iterations using the level one models. It is likely how-
ever, that then much of the level zero speed advantage will be lost.

Another approach to simplifying the calculations performed
in the first few iterations of the WR algorithm is to allow the
numerical integration algerithm, which is used to solve for the
node waveforms of the decomposed circuit lumps, to use a larger
local truncation error. Here, unlike changing the device models, it
is possible to increase the accuracy of the calculation of the node
waveforms at each iteration by screwing down the local truncation
error. In our case, since most of our circuits converge in about 5
iterations, we pick a local truncation error that is about 3 times
larger than the local truncation error we would chose to calculate
the waveforms in our final answer. Then after each iteration the
local truncation error is multiplied by 0.7. The results from this
approach weré more pleasing (table 4.1).

5. CONCLUSIONS

Several features of the RELAX2 program have been presented
which allow the program to simulate a broad class of MOS digital
circuits. We are in the process of linking RELAX2 to VLSI graphical
aditcrs to ellow us to test RELAX2 on circuits generated by the
Berkeley IC designer community.

ACKNOWLEDGEMENTS

This research has been sponsored by DARPA under contract
NESC-N39, a grant of the IBM compeany and MICRO.

The authors gratefully acknowledge the work of Ekachai
Lelarasmee, who both contributed the original algerithm and sug-
gested most of the improvements for RELAX2. We also wish to
thank J. Kaye, J. Klechner, R. Newton, and R. Saleh for many valu-
able discussions and suggestions.

REFERENCES

{1] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, "The
waveform relaxation method for time domain analysis of large
scale integrated circuits,” IEEE Trans. on CAD of ICend Syst., Vol.
1, n. 3, pp.131-145, July 1982.

[2] E. Lelarasmee, "The waveform relaxation method for the time
domain analysis of large scale nonlinear dynamical systems", Ph.D.
dissertation, University of California, Berkeley.

[3] E. Lelarasmee and A. Sangicvanni-Vincentelli, "Relax: a new cir-
cuit simulator for large scale MOS integrated circuits”, Proc. 19th
Design Automation Conference, Las Vegas, Nevada, pp. 682-690,

- June 1982.
> [4] J. Kaye and A. Sangiovanni-Vincentelli, "Solution of piecewise

linear ordinary differential equations using waveform relaxation
and Laplace transforms", Proc. 1962 Int. Conf. on Circ. and
Comp., New York, Sept. 1982.

[5] H. De Man, "Mixed-Mode Simulation for MOS-VLSL: Why, Where
and How?" Proc. 1982 Int. Symp. on Circ. and Syst., pp. 699-701,
Rome, Italy, May 1982.

[6] L.W. Nagel, "SPICE2: A computer program to simulate semicon-
ductor circuits,” Electronics Research Laboratory Rep. No. ERL-
1520, Untversity of California, Berkeley, May 1975.

[7]R. K Brayton, F. G. Gustavson, and G. D. Hactel, "A New Efficient
Algorithm for Solving Differential-Algebriac Systems using Implicit
Backward Differentiation Formulas”, Proceedings of the IEEE, Vol.
60, No. 1, January 1972

{8] C. Ho, A. Ruehli and P. Brennan, "The modified nodal approach
to network analysis', IEEE Prans. on CAS, vol. CAS-22, pp. 504-509,
June 1975.

[91J. M. Ortega and W.C Rheinbolt, Rerative Solution of Nonlinear
Equations in Several Variables Academic Press, 1970.

110} J. White, "RELAX2, a generalized program for the simulation of
MOS digital circuits using waveform relaxation methods, M.S.
thesis, University of California, Berkeley.

CROSS-CCOUPLYD HAND GATES
#Windows | # Timepoints | Max # [terations | CPU time*
SPICE - - 21.75
1 50 >100 2972
2 50 10 13.59
4 48 4 4.48
8 59 4 5.38
16 89 4 5.91
*Ona VAX 11/780
TABLE 3.1
TEST CIRCUITS
Shift Cell Two Phase Clk | Memory Cell
Method #lter | Time | #lter | Time | #Iter { Time
SPICE - 12.52 - 43.18 - 13.63
RELAX2 4 2.10 4 5.47 4 2.98
Level0 4 3.20 4 8.75 4 4.45
LevelO only 4 0.49 4 0.69 4 0.88
LTE 5 1.24 3 3.81 4 271
*On a VAX 11/780
TABLE 4.1
Inl ouT YA T 8
In2

L_J

O ey
Fugers Ve

[

TS Figurs 120

CLoCk
EY rurﬁ%_bkwr
PoTiove
: n PU’ _———I——
Tloek . __]]_J L

o5 &2 %

.Figure 3.3 a

-
TR Y
Figem L2c

L

S

S
= e
Figere 3.3 ¢

759

e
Fiyern 3.3 6

