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Abstract

Waveform Relaxation (WR) algorithms have been proven
to be effective in the transient analysis of large scale
integrated circuits. The latest version of the RELAX series
of waveform relazation simulators for MOS digital circuits,
RELAX2.1, is described. The newest version includes an
automatic partitioning of circuits, a better waveform error
control method to improve WR convergence properties, and
a dynamic windowing scheme to increase convergence
speed in the case of circuits with logic feedback. Results
comparing RELAX2.1 and SPICE2 runtimes simulating indus-
trial circuits are presented.

1. INTRGDUCTION
VLSI circuits, which often contain more than 50,000

devices, can not be weconomically sirnulated with computer’

programs that calculate circuit transient response by
nurnerically integrating a complete set of simultaneous non-
linear differential equations. This method is gemeral, but
the computational complexity grows too rapidly as the
number of devices increases. SPICE[9)], a program which
uses this approach, ean take several hours {on a VAX11,/780)
to sirmulate circuits with only a few hundred devices.

Several approaches have been developed that reduce
the compuitation time required to perform accurate simula-
tion by exploiting the structure of certain classes of prob-
lems. Most of these approaches have focused on digital MOS
circuits, and have exploited the mostly unidirectional pro-
perties of MOS transistors and the latency of digital
circuits[1-5). In this paper we will describe one particular
mtethod, Waveform Relaxation(WR)[1], and discuss its imple-
mentation in the 2.1 program. In the follewing two
wections we will describe the basic WR algorithm, and dis-
cuss some of the previolis work on waveform methods. In
Section 4, 'we will give an overview of the RELAX2.1 program
and describe in detail the partitioning algorithm used to
decompose large circuis, the circuit simulator, and the
djnamic windowing systtm. Finally, in Section 5, we will
present results and conclusions.

2 THE BASIC WR ALGORITHM

The RELAX2.1 program uses the "Gauss-Seidel” WR algo-
ritham, one of a family:of WR methods[1]. To describe the
algorithm, we will consider it as applied to the following
general :system, in which MOS circuit equations can usuaily
be formulated.

Clv,ufp+f(v,u)=0; v{(0)=V (1.1)

where C:TR*xIR" » ™™™ is a symmetric diagonally dom-
inant matrix-value‘function in which -C;(v, u© ) i#] is the
total floating capacitance between nodes i and j, G; (v, u )}
is the :sum of the capacitances of all capacitors connected
to nodei, and f : R*XIR*XIR™ -+ R" is a continuous function
each component of which represents the net current _charg—
ing the apacitor at each node due to the pass transistors,
the other conductive elements and the controlled current
sources.

Algorithbon. 1 (WR Gouss-Seidel Algorithm for solving
Eqn. (1.2))
Comment: )

The superscript & denotes the iteration count, the sub-

script 1 denotes thre component index of a vector and ¢
is:a small positive number.

k<«0;
guessw(t) ; ¢ €0, Tg so that 2%(0) = V
(for example, set v%{¢) = V,t €[0, T])

repeat §
ke«k+1

toreach'(i in N ) §

solve

N AR R R ST I
i= A
Byt bk i
ik, ok ks, o) =0

for (UB(t )t € [0, T]), given v{(0) = ¥,.

3
; -
until (maxsgign maxy z[o,T]l‘"ik(t) - o) =¢)
that is, until the iteration converges. »

Note that _qun. (1.1) has only one unknown variable vf.
The variables ¥¥;], - - -, vf ! are known from the previous
iteratioh and the variables v, , v£, have already
been computed.

I iy assurhed thdt there is a grounded capacitor, linear
or nonlineal, at'every node in the circuit then it can be
shown that the waveforins generated by the Gauss-Seidel WR
algorithm will always converge to the correct waveform

independent qf the initial guess. This strong convergence
result was proved in [1].

9. PREVIOUS WORK IN WR METHODS

Due to their favorable mumerical properties, WR algo-
rithms*have captured considerable attention. _W'R al.gorl'thms
have been applied to the solution of piecewise-linear
differential equations[8], they have been used in mixed-
mede simulators[7}, and special purpose multi-processor
architecture is being studied to implement the WR algo-

ritbm.

232

CH1987-7/84/0000-0232 $1.00 © 1984 IEEE



W
|

TR T LS

The Waveform Relaxation algorithm was tested for MOS
circuits in a research program RELAX. This version of
RELAX iaccurately computed ithe transient behavior of large
circuits up to 80 times faster than SPICE[8,9]. However, the
original RELAX program was llimited in the types of circuits
it could be used to simulate. A new program, RELAX2[10],
was a first attempt to develop a more general circuit simu-
lation program using Waveform Relaxation: RELAXZ2 handled
a broader class of circuits, and was used to experiment with
new techniques to improve the convergence and computa-
tional efficiency of the WR method[2].

Experience simulating MOS digital circuits using the

RELAX2 program uncovered ‘several problems with the WR
algorithm. The first problem was that circuits with logic

feedback loops {finite 'state machines, asynchronous cir-

cuits, digital oscillators) sometimes converged in a very
nonuniform manner, taking many iterations to converge,
and the number of iterations required was proportional to
the length of the simulation interval.

Another problem with the WR method was that although
theorems exist that guarantee the global convergence of the
WR algorithm, these theorems require that the node voltage
waveforms of the decomposed subsystems be computed
exactly. Of course, numerical methods commonly used in
circuit simulation programs do not solve differential equa-
tions exactly. Instead, a numerical integration method
{such as Backward-Euler or the Trapezoidal rule) is used to
approximate the original differential system by a sequence
of algebraic systems corresponding to a collection of
discrebe timepoints. Y¥or most numerical integration
methods, the error in this discretization approximation is a
function of the timesteps, ahd these timesteps are chosen
small enough so that the waveforms are computed to some
user-supplied accuracy. Unfbrtunately, if the errors are not
controlled in a ‘particllar manner, the WR algorithm may
not converge.

Finally, the RELAX2 program was difficult to use
because it ‘was still necessary for a user to decompose his
circuit into subcircuits. This procedure required some
expertise on the part of the 'user, as well as a great deal of
patience.

4. 'THE REIAX2.1 PROGRAM

Bn improved version of RELAX2, RELAXZ2.1, solves many
of the problerns mentioned in the previous section. It uses
the BLT{Berkeley Language Translator)[11] input-processor
to aliow the user to define his circuit in as flat or hierarchi-
cal a fashion as desired. The RELAX2.1 program then
automatically repartitions the circuit into subcircuits in
such a way that the WR algorithm convergences rapidly. The
RELAX2.1 program .uses a second-order integration method
combined with a very careful error control scheme so that
non-convergence due to discretization inaccuracies is
avoided m most cases. Finally, this new version uses a
"dynamic windowing” scheme to retain fast convergence for
the case of circuits with logic feedback.

Another advantage of the RELAX2.1 program is that it
bas more advanced models than the original RELAX2 pro-
gramm. At present the user can select the first-order
Bchichmann-Hodges model or the more accurate charge
conserving ¥ang-Chatterjee model] 12]

%.1. [OVERVIEW OF THE RELAX2.1 PROGRAM

in thissection we present an brief overview of the steps
performed in the RELAX2.1 program when simulating a cir-
cuit. A detmiled description of the major steps is contained
in the sections that follow.

The Brst step in simulating a circuit using the RELAX2.1
programiisdo create the circuit description file. In this file
a user must specify device model parameters, circuit topol-
ogy, aanalysis specifications, and plotting requests. The cir-
cuit topology can be described in as hierarchical or flat a
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form as the user desires. This circuit description file is used
as an input to the BLT(Berkeley Language Translator) pro-
gram. This program performs syntax checking, assigns
numbers to all the nodes, and expands any hierarchy. An
intermediate file is produced by BLT, and it contains a
fAattened description of the original circuit, along with the
information about the model parameters and simulation
requests.

The RELAX2.1 program reads the flattened intermedi-
ate file description produced by BLT. Before applying the
WR aigerithm, the flattened circuit is decomposed into a col-
lection of subcircuifs. This is done by first partitioning the
circuit into clusters of tightly coupled nodes. Then the ele-
ments (e.g. transistors, resistors, capacitors) that connect
to any of the nodes in a given cluster are gathered together
to make the subcircuits. Once the entire circuit has been
carved up into Subcircuits, the subcircuits are ordered, or
scheduled], starting with subcircuits that are connected to
the user-defined inputs and then following the natural direc-
tionality bf the circuit (as much as possible).

@fter a large circuit has been broken up into subcir-
cuits, and thése subcircuits have been ordered, the
RELAX2.1 program begins the waveform relaxation process.

F13 1- A decom PQSe_aL Cireuit

An initial guess is made for each :wof the node voltage
waveforms. Then a transient .analysisis performed on each
of the :subcircuits in the order determined above. To per-
form the analysis, those nodes in the subcircuit that where
not part of ithe cluster around which the subcircuit was
built, are treated as external time-varying voltage sources
{See ¥ig. 1). The values for the external voltage sources are
either the initial guess waveforms, orif the subcircuit con-
taining the external node was simulated previously, that
computed waveform. As the node waveforms are computed,
they replace the existing waveforms (initial guesses or pre-
vious iterations), and the process is repeated until the
waveforms converge.

‘However, the WR algorithm tbecomes inefficient when
used to simulate digital circuits swith logical feedback(e.g.
finite state machines, ring oseillators, ietc.) for many cycles.
For this reason the RELAX2.1:programdoes not actually per-
form the relaxation iterations by computing the transient
behavior of each subcircuit for the entire user-defined simu-
lation interval. Instead, the RELAXR.1 program uses a
modified WR:algorithm, in which the relaxation is only per-
formed ffor a small piece of the user-defined simulation
interval at a time. Exactly how large a piece of the
waveform, refered to as a window, to use is determined
automatically, at the beginning oftevery WR iteration.



4.2. PARTITIONING

In the basic WR algorithm presented above, the node
equations are solved as single differential equations in one
unknown, and these solutions are iterated until conver-
gence. This kind of node-by-node decomposition can lead to
slow convergence in the case where a few nodes in a large

- system are tightly coupled. As an example, consider the
circuit in Fig. 2, a two inverter chain separated by a
resistor-capacitor network. In this case the resistor-
capacitor network models wiring delay, so the resistor is
small compared to the output impedance of the inverter.
The WR algorithm using node-by-node decomposition was
used to solve this system, as in Fig. 3. The voltage
waveforms computed for the capacitor node for the forth,
sixth, and ninth iteration of the WR algorithm are plotted in
Fig. 4. As is clear from the figures, the WR algorithm con-
verges very slowly in this case. ‘However, if the capacitor
node and the output of the first inverter are solved
together, convergence is quite rapid, as indicated by Figs. 5
and 8.

As the example above indicates, it greatly accelerates
the convergence of the relaxation process if groups of
tightly coupled nodes are solved together as one subsystem
or subecircuit. For this reason the RELAX2 program groups
together tightly coupled nodes into subcircuits before
beginning the relaxation process. This partitioning of the
original circuit into subcircuits is done in two passes. In the
first pass transistor drain and source node pairs, nodes
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connected by large floating capacitors, and nodes con-
nected by small ficating resistors, are grouped together. In
the second pass, nodes connected by tight feedback loops
are grouped together. The specific algorithm presently
used in RELAXR.1 is the following:

Algorithm. 2 (RELAXZ Partitioning Algorithm,)

Comment:
First pass - Tie together nodes coupled tightly by ele-
ments
for each MOS transistor:

.group together the drain and source nodes.

for each diode:
.group together the anode and cathode nodes.

for each linear resistor:
if the parallel combination of all the linear
resistors at either node of the resistor is
igneater than one third the resistor value,
&roup together the two resistor nodes.

for each linear capacitor:
if the sum of all the linear capacitors at either
node of the capacitor is less than one third the
capacitor value group together the capacitor
nodes.

Comment.:
Second pass - Find tight feedback loops
repeat
for each gate node of a MOS transistor:

‘§f that transistor’s drain node or source node
is contained in group of nodes which contains
:ajgate nodewof another transistor whose drain
or source node is in the first transistor's
igroup, tie the two groups together

until (no more groups are tied together)
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In the above partitioning algorithm, any nodes con-
nected by the source and drain of a transistor are tied
together. This may be too conservative, and may not break
the circuit up into fine enough subcircuits. So far, the larg-
est subcircuit produced from the industrial circuits we
tested contained 23 nodes, and that is not overly large.
However, as we apply the method to larger problems, the
subcircuits produced may become quite large. Should this
be the case, we plan to extend the present algorithm by per-
forming an additional pass over only the excessively large
subcircuits, and subpartitioning them using more sophisti-
cated tests to-detect tight coupling.

Also, this.algorithm is not likely to work well for bipolar
circuits, as the base of a bipolar transistor is not as isolated
as the gate of an MOS transistor. As we are preserntly adding
bipolar models to RELAX2.1 we will be experimenting with
the partitioning :algorithm in conjunction with bipolar cir-
cuits in the near future.

4.3. WINDOWSIZE DETERMINATION

The WR algorithm used in RELAX2.1 becomesiinefficient
when used to simulate digital cirenits with logical
feedback(e.g. finite state machines, ring oscillators, etc.)
for many cyecles. However, the WR algorithm can still be
very efficient if the relaxation is only performed on a piece
of the waveform to be computed at a time.

As an example, consider the WR algorithm applied to
the ring oscillator in Fig. 7. The voltage waveforms for the
sutput of the first inverter computed by the first, second,
and third iteration of the waveform relagation are graphed
in Fig. 8. The graph demonstrates a unique property of the
WR algorithm when applied to circuits with ogic feedback:
the error is not reduced at every #me point in the
waveform. Instead, each iteration lengthens:the interval of
time, starting from zero, for which the waveform is correct.
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Fig. 7. The decomposition of the circuit in Fig. 4 at the kth iteration

of Algorithm 4.1,
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Fig.§ () The waveform of vy of the circuit in Fig. 4 after the first
WR fteration.  (b) The waveform of vy of the circuit in Fig. 4 after
the sscond WR iteration. (c) The waveform of v of the circuit in
Fig. 4 after the third WR iteration. (d) The waveform of #; of the
circuft in Fig. 4 after the fourth WR itesstion.

if instead, the simulation interval is broken up into
“windows'" corresponding roughly to the ring oscillator’s
period of oscillation, and the relaxation is only performed
over one "window" at a time, then convergence can be
achieved in few iterations per window. There is a trade-off,
however. If the windows are too small some of the advan-
tages of waveform relaxation are lost. One cannot take
advantage of a digital circuit’s natural latency over the
entire waveform, but only in that window; the scheduling
overhead increases when the windows become smaller, as
each circuit lump must be scheduled once for each window;
and if the windows are made very small, timesteps chosen to
calculate the waveforms will be limited by the window size
rather than by the discretization error, and unnecessary
calculations will be performed.

In the RELAX2.1 program the "windowsize" is deter-
mined dynamically, by two criteria. The first criterion is to
pick the windowsize to limit the number of timepoints
required to represent each node waveform ina window. This
puts a strict u priort upper bound on the amount ‘of storage
needed for the waveforms, and thus allows the RELAX2.1
program to aviod dynamically allocating and deallocating
waveform storage. The second criterion is toiry to pick the
windowsize so that the convergence of the WR is rapid, so
that the waveforms approach the correct solution in a uni-
form manner over the entire window. The RELAX2.1 pro-
gram presently uses the following windowsize determination
blgorithm:

Wgorithm 3 (RELAXZ Windowing Algorithm,)

Comment:

starttime = Beginning of theswindow

stoptime = End of the window

endtime .= End of user-defined simulation interval
usedpts = Max. # of points used in the last window
maxpts = Max. # of points ina waveform buffer

if(Not entirely converged in:thismindow) then {
Shorten window wavefornms overran buffers.
it{usedpts >= maxpts) then §
stoptime = starttime +
{(lastwindowsize * maxpts * 0.7)/usedpts;

3
Else just do the same wirdow again.
else ¢

stoptime = laststoptime;

3
else §
starttime = stoptime;
stoptime = laststoptime +
(lastwindowsize * maxpts * 0.7)/usedpts;

As indicated by the above aigorithm, we have not incor-
porated information about how rapidly the WR algorithm is
converging in the choice of window size. This is because we
have not found an algorithm using rate of:convergence infor-
mation that works better than the algorithm based only on
controlling the number of computed timepoints. Also, we
have no good way of generatingan initial guess for the win-
dowsize. Presently, we are considering adding a simplified
critical path analyzer to RELAXR.1 to provide that initial

guess.

4.4. TRANSIENT ANALYSIS

Relaxation methods have gruaranteed convergence pro-
perties when applied to circuits Hor ‘which there is a
grounded linear or nonlinear capacitor dt every node. This
is required by the RELAX2.1 program, and it will generate an
error message and abort if any node is hot connected to a
grounded capacitor.
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Since a grounded capacitor is alreally required by the
RE_lLAX.?.l program to guarantee relaxation converggnce.
this assumption is exploited heavily .in the method for per-
Yorming the transient analysis. Unlike many standard
approaches used in simulators like SPICE[19], the node vol-
tt_ages are guaranteed to be state variables for the
dnfl‘erentlal equations that describe the circuit system. For
this redson error control can be perforthed by considering
only the node voltages.

The differential equations for a subcircuit can be for-
mulated using nodal analysis as follows:
(4.1)

Clo,upo+f(v,u)=0; u(0)=V

In order to improve the numerical properties of the equa-
tion description of the system, charge, rather than voltage,
is used as the state variable. This leads to a modified form
for the system equations:

g+7(q.w)=0; q(0)=8@
where ¢ =g(v) is such that é = C(u,u)v
Jwu) = f(g)u).

As in standard circuit simulators, the RELAX2.1 pro-
gram solves Egn 4.2 using a numerical integration method
with varying timesteps. Since the major aim of the RELA¥XZ.1
program is to simulate digital circuits, an integration
method that would be efficient for that type of problem was
chosen. In general, low order one-step methods are recom-
mended for problems with rapid transitions, like digital cir-
cuits. However, first order methods are not accurate
enough to insure the waveform relaxation convergence. For
these reasons the trapezoidal rule, a second-order one-step
method, was chosen.

Given a timestep h, the trapezoidal integration method
applied to Eqn. 4.2 yields:

gw(t+h)) - g(v(t)) -
0.5h( f{v(t+h)u) + flv(t)u) ) =0

In order to solve the algebraic system generated by
Egn. 4.3, a classical Newton-Raphson method is used. The
iteration equation for the Newton-Raphson method for solv-
ing F(z) = Ois

Jp(z* ) (a* -z¥71) = -F(z1) (4.4)
where Jr is the jacobian of ' with respect to z. If the New-

ton algorithm is used to solve Eqn. 4.3 for v(¢ +h) the cost
function, F(v(t+h)), is:

F(u(t+h)) =

glu(t+h)) - g(u(t)) - 0.5h( f (v(t+h)u) + f{u(t)u) )

and the jacobian of F(v{t+h)), Je(u(t+h)) is easily shown
to be:

Te(u(t+h)) = Clu(t+h)u) + 0.5h%uL(v(t+h)) (4.8)

{4.2)

and

(4.3)

(4.5)

Although the charge forrnulation, Egn. 4.2, is numeri-
cally better behaved than the voltage formulation, Eqn. 4.1,
using the charge formulation does present a problem in
error control. In the WR algorithm, voltage is the relaxation
variable, so it must be computed accurately to insure the
relaxation convergence. This implies that even though
charge is the state variable in the above equations, the
intdgration timesteps should be chosen to computing accu-
rate voltages. This strategy has worked well so far in

RELAX2.1, but if very nonlinear charge equations are used
for the MOS models, controlling errors in voltage may not be
sufficient.

5. EXPERIMENTAL RESULTS USING RELAX2.1

Benchmark comparisons:between RELAX2.1 and SPICE2
using industrial circuits and the first-order MOS models are
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encouraging {See table below), and we hope to provide com-
parisons between RELAX2.1 and SPICEZ using the more
advanced MOS model by:the Conference time.

Circuit Mosfets | Diodes | Nodes | SPICE2 | RELAX2.1 | Ratio
Ring Ose. 7 0 3 17s* 5.1s* 3.3
uP Controt 118 116 66 1400s* 82s* 17
Cmos Memory 344 277 151 10400s* 380s* 28
4-bit counter 259 0 170 4300s* 320s* 14

*On Vax11,/780 running Unix

6. CONCLUSIONS AND ACKNOWLEDGEMENTS
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tested on a 88000-based multiprocessor.
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