A Large Scale MOSFET Circuit Analyzer
Based on Wave form Relaxation.

J.F.Beetem, P.Debefvel, W.Donath, H.Y.Hsieh, F.Odeh,
A_.E.Ruehli, J.White2, P.K.Wolff Sr.

IBM T.J. Watson Research Center

Yorktown Heigths, NY 10598

ABSTRACT

Recently, it has been shown that the waveform relaxa-
tion method is a very promising approach for the anal-
ysis of large MOSFET circuits. Also, a key problem in
the dexign of VLSI chips is the verification of the tim-
ing waveforms. In this paper, we describe a progi im
for the hierarchical analysis of these large scale circuits.
The program employes the most recent advances made
in the waveform relaxation techniques. The input and
output are hierarchical employing graphics so that cir-
cuits can be analyzed interactively.

1. INTRODUCTION

The verification of the timing waveforms is a key
problem for VLSI chips especially for high perform-
ance technologies. A timing verification tool must be
able to accommodate arbitrary connections of transis-
tors (e.g. pass transistors circuits) {1] since they may
lead to very efficient designs. A modern program like
the one described in this paper must accept hierarchical
circuit descriptions and the use of graphical input and
output is mandatory. Also, the efficiency of the analy-
sis is very important since an ever increasing number
of transistors are involved in the chips and designers
are interested in the verification of larger portions of a
circuit. Approximate timing simulators [e.g.2] can
sometimes be used since they offer a speed advantage
over the analyzers. However, the uncertainty of the
accuracy of these tools makes it very desirable to have
an accurate timing analyzer at least as a backup for the
timing simulator. We distinguish between a simulator
and an analyzer where we assume that a simulator in-

volves some heuristic guesses while mathematically self
consistent numerical analysis techniques are employed
in the analyzer.

The waveform relaxation method has recently been
shown to be an effective method for the exact analysis
uf MOSFET circuits. Considerable progress has been
made in the last three years since the first experimen-
tation with the waveform relaxation (WR) method
[3]. One of the main motivations for its discovery was
the desire to analyze large scale circuits globally in time
rather than by the the global incremental approach.
The problem with the global incremental approach is
that all subcircuits must be analyzed for each time step
until the final time is reached. This approach puts un-
due restrictions on the analysis of large scale circuits
[4]. However, it is important to note that the incre-
mental approach is appropriate for a general purpose
circuit analysis programs like Spice {5] or ASTAP [6].
The WR technique has been proven to converge for
realistic circaits [7] and practical implementations
[8,9] have shown the usefulness for the analysis of
large scale MOSFET circuits. An example of a speedup
factor of a WR program over SPICE is a factor of 64
[7]. However, this is a function of many parameters
like circuit size and type, devices, models etc., and is
only an indication of the actual gain.

In this paper, we are reporting on a large scale
MOSTLET circuit analysis program which implements
the latest WR techniques. Section 2 of this paper ad-
dresses the sysiem overview and points out the new
algorithm used. The software implementation as well
as some algorithms are described in Section 3 and some
experimental results and experiences with our program
are presented in Section 4.

1 on leave from the Swiss Federal Institute of Technology, 1007 Lausanne, Switzerland.
2EECS Departement, University of California, Berkeley, CA 94720

CH2080-0/84/0000/0507501.00 © 1984 IEEE

507

2. SYSTEM OVERVIEW

The time domain circuit analysis involves the solution
of a system of differential equation describing the cir-
cuit, mathematically formulated as

F(y,y,u) = 0

WO = ¥ 1

where the dot denotes differentiation with respect to
time and y and u usually represent nodal voltages [7].
The system described by (1) is decomposed into M
decoupled subsystems:

FEGnyomw) = 0 ooy @
»0) = i -~ T

where the 17, are the decoupling inputs (loading currents
and/or voltages y,y, with j#i). During each iteration,
each subsystem is solved for its assigned variables over
the given time interval [Tstart, Tstop] by using the ap-
proximate vectors u . The relaxation process is carried
out among the subcircuits until satisfactory conver-
gence is achieved. An acceleration of the convergence
is obtained with the use of the latency detection [10]
for each subsystem and also by allowing each decom-
posed subsystem to have more than one unknown
[9,10]. This corresponds to a block relaxation method.
In that case, the size of the subsystems is carefully
chosen and will be detailed later. Modified versions
of latency and block relaxation methods are included
in our program. Features like automation of some pro-
cedures and "easy-input” are implemented in order to
facilitate the use of the program by relatively inexperi-
enced users and to make it "'user friendly'".

The input to the program can be accomplished either
via a graphics representation of the schematic diagram
or a language description. There are many advantages
to graphical input : it is natural, accurate, easily main-
tained and is self documenting. The data represen-
tation is hierarchical since this is an efficient way to
represent large circuits [11].

We partition a system into a hierarchy of modules.
There are three kinds of modules:

Primitives : indivisible circuit elements such as resis-
tors, capacitors, and transistors,

Leaves circuits containing only instances of

primitives,

Composites: instances of leaf and/or composite mod-
ules, which may also contain primitives.

508

Medium and large digital circuits consist usually of
many subcircuits which can be designed automatically
from a transistor list specification extracted, for exam-
ple, from IC mask data. Indeed, the single node de-
composition , suggested by the Canonical Waveform
Algorithm [7], does not represent the most efficient
strategy for these circuits. For this reason, special al-
gorithms have been developed for the partitioning of
the circuits into subsystems (subcircuits) which can be
analyzed efficiently using a small incremental program.

The waveform relaxation method is then employed to
compute the waveforms between the subcircuits while
a new scheduling algorithm determines which subcircuit
or cluster of subcircuits must be analyzed next. Al-
though, the scheduling process is not strictly necessary
to guarantee the convergence of the waveform algo-
rithm, it has a profound impact on the convergence
speed. For example, if a chain of N inverters analyzed
in a backward order will require at least 2*N waveform
iterations, the scheduling from input to output (for-
ward direction) may require only 2 iterations.

The three kinds of modules (composite, leaf, primi-
tive) are analyzed in a different manner. Primitives are
only analyzed if they are part of a leaf or composite
module since they are not interesting by themselves.
Leaves are analyzed using a small circuit analyzer
(SCA) shown in Figure land the result is a set of up-
dated waveforms. These new waveforms will be used
to update other waveforms in the system using WR.

Graphical Textual
Description ———| { n p u t | €= Description
Static T
Partitioning ¢——»
et 4+—— load

Internal
Representation l

I Extraction

Static

e —
————p
Scheduling l L

Simulation—————| Dispatcher |e¢———| Waveform
Controls

$ Database

Small Waveform

Transistors Circuit Display
Models ———| Analyzer
(s CA)

Figure 1. Program Structure.

Composite modules are analyzed hierarchically using a
recursive algorithm. The simple algorithm for com-
posite simulation is to analyze each of its non primitive
components in some predefined order specified by the
Scheduler. Components which are leaves are analyzed

Rp—-

using the leaf rule just described. Components which
are themselves composite are analyzed by applying this
rule recursively, i.e. by analyzing each of its non prim-
itive components. Primitives contained in composite
modules are handled as loads.

Load analysis is done in two parts: a static load ex-
traction before actual analysis, and dynamic load gen-
eration, done by a Dispatcher during the analysis. The
inaccuracies generated by separate analysis of compo-
nents are removed by successive iterations of WR.

The performance of the program may be limited by the
amount of main storage available for the program data
and waveforms since frequent disk swapping is re-
quired. The conventional approach is to keep the last
two waveform iterations in main memory so that con-
vergence of the selution for each node can be tested,

or A
¥

max ‘ V[(f) - VI-}(t) I < € olerance (3)
[re (0.TMax)] :

where V(1) and VVI(r) are the latest and previous
voltage waveforms and [is the iteration number. Main
storage must be conserved since the waveform for each
node may require several kBytes. The adaptive
waveform algorithm [12] removes this restriction. The
fundamental idea behind the adaptive strategy is to
analyze the chain of leaf modules by subsets where a
subset is composed of a few successive leaf modules.
This subset is analyzed until the waveforms converge.
These subsets are chosen like a "sliding window in
space"" covering subportions of the circuit sequentially.
Only the subset components and the corresponding
waveforms are kept in main storage. With this scheme,
the limit on the circuit size is removed and the maxi-
mum circuit depends now on the disk capacity. The
output waveforms are available for all nodes, once
convergence of the waveforms is achieved.

The program accepts CMOS as well as NMOS transis-
tor circuits. Each technology is described completely
in independent segments which are plugged into the
program as they are needed. This modularity allows
the use of different technology files.

3. SYSTEM IMPLEMENTATION

The software structure of the program is in the form
of modular program segments as shown in Figure 1.
The program is written in Pascal {13} and each segment
is compiled separately. As a consequence, an upgrade
done in one segment does not implicate a recompila-
tion of the whole program.

509

3.1. Input Phase :

Circuit topologies are entered into the program prima-
rily using an interactive graphics editor (GE). The GE
is a fast and powerful tool for entering circuit diagrams.
It extracts circuit topology as a diagram is being en-
tered or changed, and has many features to help the
designer to enter a correct circuit. The editor fully
supports hierarchical design, allowing the designer to
specify the logical partitioning of a system at entry
time. The GE makes it easy to expand a component
library and create new symbols for circuit elements.
The user interface has been optimized for efficient
entry and editing of diagrams.

Although the GE is the best way for designers to enter
circuit diagrams, there are cases where the circuit
topology is not entered by hand, e.g. topologies ex-
tracted automatically from IC mask data. To support
these cases, we use a textual interconnect Pascal like
language. An example is reproduced at Figure 2. Like
the GE, it supports hierarchy. A system can be de-
scribed using any combination of GE diagrams and
automatically generated language statements.

3.2. Preprocessor :

To improve the speed of convergence and exploit the
structure of the class of circuits to be analyzed (MOS
digital circuits), a reordering of the circuit is performed
in the preprocessor phase. Debugging functions as
connectivity and referencing checks are also executed
at this stage.

The reordering occurs in two steps : first, a static par-
titioning of the circuit into Strong Connected
Components (SCC) [14], and second, a static ordering
(called scheduling) of the elements in accordance with
the signals flow from inputs to outputs through the
circuit.

A static load extraction is also performed in the pre-
processing phase: it consists of creating a load model
of the inputs of a module.

3.2.1. Static Partitioning :

The basic idea of the partitioning is to subdivide the
circuit into small pieces: the break is done at the "high
impedance branches' and voltages sources since a cut
at the "low impedance'' points results in a slower con-
vergence. These pieces are called Strong Connected
Components and are composed of elements (primi-
tives) connected by drain-source or resistor paths and
at least one element connected to the voltage supply.
The automatic partitioning of a transistor list is done
by the procedure Partition. This procedure divides the
list into a leaf module list by applying an Union-Find
algorithm [15] following the SCC rule. The circuit has
now a two level representation : the first is a global

description of the interconnections between the IN-
PUTS and OUTPUTS and the leaf modules, the sec-
ond is the description of the contents and the
interconnections between the elements (primitives :
capacitances, resistances and transistors) inside each
leaf module.

As an alternative, the user may subdivide the circuit
hierarchically by hand via the GE. This partitioning is
usually based on logical elements. However, to insure
that this partition is efficient for the WR algorithm in
terms of convergence and speed, the procedure
CheckPartition will review the proposed partitioning
and, if necessary, modify the data structure according
to the SCC algorithm.

In both cases, the result is a hierarchical description of
the circuit. The modifications done to the data struc-
ture are completely transparent to the user.

3.2.2. Static Scheduling :

In general, the internal description of the circuit re-
flects an arbitrary order for the lists of components of
a module. The order in which modules are processed
during the analysis is determined by a procedure called
Scheduler.

This scheduling assumes that the leaf cells and the
composites cells are one-way models i.e. there is a
strong signal flow from inputs to outputs. The basic
algorithm applied for a module is :

Repeat {
visit the list of unscheduled elements;
if (ALL input nodes of an element are scheduled)
then push it in the Stack of scheduled elements
mark output ncdes as scheduled; }
Until (Stack is full);

The program starts with the root which is the highest
level in the hierarchy and schedule it by applying this
algorithm. Then, the resulting ordered list is visited
starting from the first cell and the algorithm is repeated
recursively in a depth first search manner. Each mod-
ule is scheduled only once. The last level scheduled is
the leaf module level. The program stops after every-
thing is scheduled.

A feedback loop is detected when none of the remain-
ing elements could be scheduled and the stack is not
full. In that case, the program calls a procedure called
FeedbackSolver which has two functions : first, to find
the exact composition of the feedback loop by applying
the SCC algorithm on a directed graph where the
dominator is imposed by the scheduler procedure itself,
and second, to push the elements of the strong con-
nected component in an ordered (levelized) manner in

510

o
o

/* Global signals... */

%global GND,VDD; .
/= Prnnxtnle mhdUles for this example */
%define %prim EFET(=D,6,=S,=B—GND,&W,6L);
%define %prim DFET(=D,G,=S,=B—~GND,sW,&L);
%define Zprim CAP(=A,2B,5C); .
/* Code generated for a NAND module */

%define 0 = NAND(A,B);
TI1:EFET(0,A,1,* NS =WE,L=LE);
T2:EFET(1,8,6ND.% ,W=WE,L=LE);
TL: DFET(VDD 0,0,%,w=wD,L=LD);

€2:CAP(1,GND,C= c15
C1:CAP(0,GND,C=C2); .
/* Code generated for a XOR module */
%def.ne OUT = XOR(A,B);

= UT:NAND(A,B wD= 2 L8= 4 ,WE=4.1,LE=1,01=0.5,02=0.5);
2 = U2:NAND(A,7,wWD=3,L0=5,WE=L. 2, LE=1,01=0.5,02=0.5};
3 = U3:NAND(1,B,WD=3,L0=5 WE=4. 1 ,LE=], Sci=0. £,02=0.5);
OUT = Uk: NANDEZ 3,wWD=2,LD=4 ,WE=4 . 2,LE=1,01=0.5,02=0.5);

Figure 2. Example of a graphical and textual

representation for a XOR

the stack. Special references are given on the existence
(Feedback flag) and size of the feedback loop. Those
references will be used by the dispatcher. The com-
plete algorithm is outlined in the Figure 3.

3.2.3 Load Circuit Extraction :

For composite modules, it is necessary that compo-
nents are analyzed in the correct electrical context, i.e.
electrical loading effects be properly modeled.

Static load circuit extraction consists of creating a load
model of the inputs of a module. The extracted loads
are identical for all instances of a module, thus reduc-
ing storage and program execution time. The static
load model of a leaf module is simply those compo-
nents strongly connected to an input of the module.
The static load model of a composite module consists
of primitive components strongly connected to an in-
put and also all loads of any non primitive components
which are strongly connected to an input of the com-
posite module (Figure 4).

When generating load models, it is necessary to process.

the modules in a reverse hierarchical order, i.e. a mod-
ule must have its loads extracted before any composite
module is instantiated.

<

-

Procedure Scheduler(Module);

Begin
Mark Input nodes of this Module;
Open a Stack for the scheduled elements;
Repeat
{ IF (ALL input nodes of an element
are marked)
then
Mark all output nodes for this element;
Push it in the stack;
IF (Feedback detected)
then FeedbackSolver;
$

until (all elements are stored in the stack);

for (each element in the stack) do {
IF (it is 2 composed element)
then (if the corresponding Composed
Module is not scheduled)
then Scheduler(Composed Module); }
End;

Figure 3. Scheduling Algorithm.

3.3. Hierarchical Circuit Analysis :

3.3.1. Dispatcher :

The hierarchical analysis is controlied by the Dis-
patcher. The Dispatcher has three main tasks:

1. It selects which module(s) should be analyzed
next, as specified by the static scheduler, the feed-
back flag, and the adaptive waveform algorithm.

2. Tt manages the waveform database: it selects which
waveforms must be in memory for a leaf analysis
{procedure WDBREAD), and updates (proce-
dures WDBALLOC and WDBWRITE) the data-
base with new waveform values at the end of a leaf
analysis.

3. It generates dynamic loads for a circuit being ana-
lyzed.

To analyze a leaf module, the Dispatcher must call the
Small Circuit Analyzer (SCA). Before it does, it makes
sure all necessary node waveforms are in memory by
fetching them from the waveform database. In addi-
tion, it adds appropriate load models to the circuit. The
resulting augmented model is a complete description
of the leaf circuit and its environment, which the SCA
can analyze as a complete circuit. The result of the
SCA is that some of the waveforms have new values
closer to the final solution. The Dispatcher stores the
updated waveforms back in the waveform database.

511

Analyzing a composite module requires close attention
to dynamic loads. To analyze a composite module, the
Dispatcher analyzes each of its non primitive compo-
nents in the order specified by the scheduler. (This
analysis is done by calling the Dispatcher recursively.)
The load model of a given component x consists of the
following :

1. Any primitive components of the composite mod-
ule which are strongly connected to an output of
X.

2. Any static loads of any non primitive components

- which are strongly connected to an output of x.

3. Any external loads of the composite module which
are strongly connected to an output of x. These
external loads appear when the Dispatcher calls
itself.

The dynamic loads become the external loads of mod-
ule x when the Dispatcher is called to analyze compo-
nent x. If x is a leaf, then the unloaded circuit for x is
augmented by the loads, all waveforms in x and its en-
vironment (including all waveforms connected to the
loads) are fetched from the waveform database, and
the SCA is called. If x is composite, then it is analyzed
by successive simulation of its components.

L
Inz__—”:

out

Figure 4. Load model for a NAND gate.

The new Adaptive Waveform Algorithm (AWA) is ap-
plied to define a small collection of independent and
successive subcircuits (subset) and to analyze them
until the waveforms have converged. First, a subset is
defined starting from the first leaf module to be ana-
lyzed; the size is determined by the error tolerance
¢(T). This subset will act as a ''sliding window"' along
the chain. The waveform analysis is performed for the
first subset until waveform convergence occurs for the
first module. Then, these waveforms are stored on disk
and discarded from the main storage as well as the first
module itself. The next module following this subset
is loaded afterwards into the main storage to define a
new subset ready for analysis. When the Dispatcher
detects the flags created by the Scheduler for a feed-
back loop, a decision is made about the function and

the type of feedback. For a weak feedback, the dis-
patcher will collapse the constituting leaf modules into
one module, while for a global feedback, the time win-
dow is adjusted to the clocking scheme.

Nevertheless, the size of a leaf module or a consortium
of leaves may be larger than the size which is efficient
for a full matrix solution. The program has an auto-
matic switch to activate a sparse matrix solution in the
SCA for this specific module. This procedure is re-
peated until all leaf modules are analyzed.

3.3.2. The Small Circuit Analyzer (SCA) :

The mission of the SCA is to compute the waveforms
for a leaf module or a composite module. The SCA is
located at the lowest level of the hierarchical structure
as shown in Figure 1. The activation of the SCA is
completely controlled by the Dispatcher. Consequently
there is a "master” and "slave" relationship between
the Dispatcher and the SCA.

The software structure is in the form of modular pro-
gram segments, the calling sequence is shown in
Figure 5. A separale modular segment is used for each
technology.

Read Leaf |e—————— Leaf Data
Data

£——-——— Analysis data
\-——' Analysis
Control
Matrix |€————=—— and Setup
Update

|

Time
Loop

Technology
Files

Newton p——| Waveform
Loop Computation

R
ERI I

Figure 5. Small Circuit Analyzer (SCA)

The leaf module matrix equation is formulated in terms
of a nodal type analysis approach that yields N
equations in N unknown node voltages. To this end,
all the assumptions for the nodal analysis are also ap-
plied here. However, for the sake of integration stabil-
ity, we choose to use the charge "q'' as the state
variable for the nonlinear transistor capacitances in-

stead of the nodal voltage "v'". i.e.

512

g = fgv)) 4)
g = g (5)

where ¢ = dg/dt.

A discretization with Gears formula of order r(r = 2
is used) i.e.

r

Xpoy = E 0 Xyyq-i (6)
i=0
where «, is the integration coefficient. For equations
(4) and (6) :

r

2 o Buy1-V) = gy)

i=0

After linearization with Taylors expansion at v, ,
equation (7) becomes

L OO] .\ -
0 9y av N

r (8)
- 2 Q; grl:+l—i(v) + f(g(",l.(+1))

i=0

where Av = W) — V(.)-

The major tasks assigned to the SCA is similar to those
performed by others circuit analyzer such as SPICE or
ASTAP. In an initialization phase, all the analysis
controls and technology dependent parameters are as-
signed from external files to the proper or default val-
ues. Some, like the threshold voltages, are supplied in
tabular form [18]. This initialization phase is done
once and is valid for the entire analysis.

In the analysis phase, each leaf module will be proc-
essed in the same manner. The program reads first the
leaf module description and all the arrays and the ma-
trix of the leaf module are initialized to zero. The re-
quired input voltages are obtained from the records of
the Dispatcher. The variables to be solved are then
predicted according to the integration algorithm. In
this program the 2nd-order Gear’s method is imple-
mented. With the predetermined technology to be
used, the proper transistor model is called and all the
capacitances, currents, and charges are computed as
well as the partial derivatives for the Jacobian matrix .
Then, taking into account the load elements, the leaf
module matrix equations are created. The discretized
nonlinear equations of the leaf module are solved by
the Newton-Raphson iteration method. All the non-
linear capacitances, currents, charges, and partial de-

ALU 7 bit Ring ALU 32 bit CMOS inverter chain
Oscillator 10 50 100 200
ASTAP | 578 sec 59 sec - 61 sec| 460 sec| 880 sec -
our .
program | 37 sec 14 sec | 80 sec(*) 7 sec 24 sec | 32 sec 49 sec

Figure 6. Execution times (CPU) for an IBM-3081.

rivatives are recomputed for each Newton iteration. If
the above Newton-Raphson iteration has converged,
the local truncation error of the present time step is
evaluated. If the local truncation error is within the
predetermined bounds, the present time step is, then,
accepted. Note that the time step will be reduced if ei-
ther the Newton-Raphson does not converge or the
local truncation error is not acceptable. After the
present time step has been accepted, the computed
solutions of that time step are stored in the proper
waveform arrays for subsequent interactive output
display. To this end, the new time step is estimated for
analyzing the leaf module until the stop time is reached.

4. SOME EXPERIMENTAL RESULTS

Several circuit examples for both nMOS and CMOS
were used for testing our program. All the analysis
were performed on an IBM-3081 with both ASTAP
and our program. The transistor models are at least as
complex as the levels 2 and 3 of SPICE [19]. However,
the implementation is somewhat different.
Consequently, the total CPU times shown in Figure 6
can only be considered as preliminary performance in-
dications of the two programs.

The circuit shown in Figure 7 is a 7 bit ALU with a
total of 375 transistors and 418 capacitors. An identi-
cal result is obtained after 4 waveform iterations with
our program in much less time than the ASTAP pro-
gram required. The second example is a ring oscillator
with 9 stages (46 transistors). The improvement in
speed for the ring oscillator is not as large as in the first
case. This is due to the fact that here the program de-
tects a feedback loop which includes the entire circuit
and collapses all the leaf cells into one cell. To this end,
the time step is thus the same for all the nodes, and the
advantage of independent time steps disappears for
this case. On the other hand, without the feedback
loop detection, the circuit will be analyzed hierarchi-
cally and the CPU time needed to obtain a waveform
convergence was 53 sec.

The third example is a 32 bit ALU also using nMOS
thechnology and consists of about 1200 transistors and
4000 capacitors, The analysis time is 80 sec for the
first waveform iteration. We are not able to run this

513

32 bit ALU with ASTAP due to excessive storage and
run time requirements.

The last example is a chain of CMOS inverters con-
nected in series. We tested with 10, 50, 100 and 200
inverter stages on both programs. As we expected, the
CPU time differences is proportional to the number of
stages. Two waveform iterations were required for the
first CMOS example chain and three for the last one
having 200 inverters.

The CPU time savings obtained with this program are
mainly due to the carefull implementation of the
waveform relaxation algorithm and to the algorithm it-
self as well. The amount of data stored for an example
is directly correlated to the hierarchical representation
and has no impact on the speed of this program.

5. CONCLUSIONS

The program presented in this paper enhances the
performance of "exact" circuit analyzers for the com-
putation of exact timing waveforms. We have pre-
sented a self-consistent scheme which generalizes the
techniques to arbitrary MOS circuits including feed-
back etc. . Hence, it extends the uselfulness of the
waveform relaxation method. The users acceptance of
a program is determined by many factors like the reli-
ability, transportability and implementation. We found
that Pascal/VS [13] provides an excellent environment
for the development of such reliable, transportable and
readable code.

Acknowledgments

Valuable suggestions have been made by program us-
ers which helped us in our task. The contributions of
Vojin Oklobodja with his large example and Paul
Ledak for his cooperation are especially acknowl-
edged.

K1> i k3> K> ke> g>

119 01

(top)general view of ALU 7 bit,

128 GK I

Figure 7.

(bottom)internal view of bit 2.

References

C.A.Mead, L.A.Conway: "Introduction to VLSI system'',
Addison-Wesley, 2nd Ed., 1980.

C.J.Terman: "RSIM- A Jogic-level timing simulator", IEEE
Proc. Int. Conf. on Computer Design, pp.437 -440, Port
Chester, N.Y., Nov. 1983,

E.Lelarasmee, A.Ruehli A.L. Sangiovanni-Vincentelli:
"Waveform relaxation decoupling (WRD) method", IBM
Technical Disclosure Bulletin, Vol.24, No.7B, pp.3720
-3721, Dec. 1981

A.E.Ruehli,G.S.Ditlow: "Circuit Analysis, Logic Simulation
and Design Verification for VLSI", Proc. IEEE, Vol. 71, pp
34-48, Jan.1983

L.W.Nagel: "SPICE2: a computer program to simulate
semiconductor circuits”", Univ. of California, Berkeley, ERL
Memo ERL-M520, May 1975

" advanced Statistical Analysis Program (ASTAP)", Pro-

gram Reference Manual, Pub. No. SH20-1118-0, IBM
Corp. Data Proc. Div., White Plains, NY 10604.

514

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

W.T.Weeks, A.J.Jimenez, G.W.Mahoney, D.Mehta,
H.Quassemzadeh, T.R.Scott : "Algorithms for ASTAP - A
Network Analysis Program", IEEE Trans. Circuit Theory,
vol. CT-20, pp.628- 634, Nov. 1973.

E.Lelarasmee, A.E.Ruehli, A.S.Sangiovanni- Vincentelli:
"The Waveform Relaxation Method for Time Domain
Analysis of Large Scale Integrated Circuits", IEEE Trans.
on CAD of int. Circ. and Systems, vol. CAD-1, pp.131-
145, July 1982.

H.DeMan, "Mixed-Mode simulation for MOS-VLSI : Why,
Where and How?"', IEEE Proc. ISCAS, pp.699 -701, Rome,
May 1982.

J.White, A L.Sangiovanni-Vincentelli : "Relax2 : A New
Waveform Relaxation Approach for the Analysis of LSI
MOS Circuits", IEEE Proc. 1563 Int. Symp. Circuits Syst.,
May 1983.

N.B.Rabbat, A.L.Sangiovanni-Vincentelli H.Y.Hsieh: "A
Multilevel Newton Algorithm with Macromodelling and
Latency for Analysis of Large Scale Nonlinear Networks in
the Time Domain", IEEE Trans. Circuits Syst., vol. CAS-26,
pp.733-741,Sept. 1979.

1.F.Beetem: "Structured design of electronic systems using
isomorphic multiple representations”, Thesis, Stanford
Electronics Laboratories, Stanford Cal. 94305, Dec 1981,

F.Odeh, A.E.Ruehli, C.H.Carlin: "Robustness aspects of an
adaptive waveform relaxation scheme", IEEE Proc. Int.
Conf. on Computer Design, pp. 396 -399, Port Chester,
N.Y., Nov. 1983.

"Pascal/VS", rel.2.1, Program No: 5796-PNQ, Pub. No.
SH20-6168-1 and SH20-6162-1, IBM Corporation, 555
Bailey Av., P.0.Box 50020, SanJose, CA 95150.

R.Tarjan: "Depth-First Search and Linear Graph Algo-
rithms," SIAM J. Comput., Vol 1, No 2, pp.146 -160, June
1972.

A.V.Aho,].E.Hopcroft,S.D.Ullman: "The Design and Anal-
ysis of Computer Algorithms," Reading, MA : Addison-
Wesley, 1975.

H.Schichman, D.A.Hodges : "Modeling and Simulation of
Insulated-Gate Field-Effect Transistor Switching Circuits"
IEEE J. Solid State Circuits, vol. SC-3, pp. 285 -289,
Sept.1968.

V.B.Rao, T.N.Trick, LN.Hajj : "A Table-driven Delay-
operator to Timing Simulation of MOS VLSI Circuits",
IEEE Int. Conf. on Comp. Des., pp. 445 -448, Port Chester,
Nov. 1983.

H..Hanafi, L.H.Camnitz, A.J.Dally : "An Accurate and
Simple MOSFET Model for Computer-Aided Design",
IEEE J. Solid State Circuits, vol. SC-17, pp. 882 -891,
Oct.1982.

A.Viadimirescu, S.Liv : "The Simulation of MOS Integrated
Circuits using SPICE2", Memo. UCB/ERL M80/7, Uni-
versity of California, Berkeley, Feb.1980.

