Proceedings of ISCAS 85

PARTITIONING ALGORITHMS AND PARALLEL IMPLEMENTATIONS OF WAVEFORM
RELAXATION ALGORITHMS FOR CIRCUIT SIMULATION

Jacob White and A.L. Sangiovanni-Vincentelli
Department of EECS
University of California at Berkeley

Abstract

Since the first applications of Waveform Relaxation (WR)
algorithms 1o the transient analysis of MOS digital circuits,
several modifications to the basic method have been used to
improve WR efficiency and insure convergence. In particular,
convergence problems related to tight feedback loops and inac-
curate subcircuit solutions have been addressed and solved with
the use of theoretically justified techniques such as dynamic
windowing and adaptive error control. However, in order to get
reasonably rapid converFence of the the WR method, it is also
necessary lo partition a large circuit into loosely coupled subcir-
cuits. In this paper a numerically based partitioning method is
presented thal atlempts to break a large circuit into loosely cou-
pled subcircuits by examining estimates for the speed of conver-
gence of the relaxation iteration for candidate partitions. This
new partitioning technique has been implemented in the WR
based circuit simulator RELAX2.3 and results from that pro-
gram are presented. Finally, the implementation of the WR
algorithm on parallel processors will be presented.

1. INTRODUCTION

The tremendous increase in complexity of circuit design
and availability of computing resources has made computer
simulation an important and heavily used tool for VLSI design.
When accurate computation of the behavior of a VLSI circuil is
important to a designer, the only reliable choice is to construct a
large system of nonlinear ordinary differential equations
(OI%E'S) that accurately describe the circuit, and use some
numerical method to solve the system.

However, the direct numerical techniques used in programs
like SPICE[1] can become inefficient for large systems where
different stale variables are changing at very different rates.
This is because direct techniques lgorce every differential equa-
tion in the system 1o be discretized in time identically, and this
discretization must be fine enough so that the fastest changing
state variable in the system is accurately represented. If it were
possible to pick different discretization points, or timesteps. for
each differential equation in the system. so that each could use
the largest timestep that would accurately reflect the behavior
of its associated state variable, then the eficiency of the simula-
tion would be greatly improved.

The Waveform Relaxation (WR) algorithm is a technique
that allows this kind of multirate integration. In this method
the ODE system that describes a large circuit is first decomposed
into possibly many loosely coupled subsystems. The solutions
to the ODE subsystems, or waveforms, are calculated by
"guessing" the behavior of the surrounding subsystems. The
computed waveforms for each of the subsystems are used to
improve these _Iguesses. and then the subsystem waveforms are
recalculated. The procedure is iterated until the waveforms
converge.

Experience simulating MOS digital circuits using the
RELAX2.1 program uncovered severa? problems with the WR
algorithm. The first problem was that some circuits converged
in'a very nonuniform manner, and took many WR iterations to
converge, where the number of iterations required was propor-
tional to the length of the simulation interval. Another problem
was that the numerical method used to compute the WR itera-

CH2114-7/85/0000-0221%$01.00 © 1985 IEEE

tion waveforms in some cases did not produce sufficiently accu-
rate answers to guarantee WR convergence. Also, WR, as all
relaxation techniques, is not efficient when the relaxation is car-
ried out across tightly coupled subcircuits. In SPLICE1[5), and
RELAX2, the user had to to carefully decompose his circuit into
loosely coupled subcircuits before starting the simulation. This
procedure required some expertise on the part of the user, as
well as a great deal of patience.

The latest version of RELAX2, RELAX2.3, addresses all
these problems. An adaptive algorithm is used to break up long
simulations into severafj shorter intervals, chosen so_that the
WR algorithm converges rapidly over each window[4]; a more
accurate integration method with adaptive error control is used
to insure WK convergence[6]; and a hierarchical input processor
combined with a circuit partitioner that automatically breaks
large circuits into subcircuits. This allows the user to specify his
circuit in whatever hierarchical fashion is desired.

The RELAX2.3 program also has more advanced models
than the original RE A§(2 program. The user can select the
first-order Schichmann-Hodges resistive model with a first-
order charge-conserving Yang-Chatterjee charge model, or the
more accurate full Yang-Chatterjee model which includes short
channel and subthreshold conduction effects[7]. In addition, a
sparse matrix package was added to improve the program
efficiency when solving large subcircuits, and 1o support a DC
solver for efficiently computing intial conditions.

The &Z;Eer is organized as follows. In Section 2 we present
the basic algorithm; in Section 3 we describe the new algo-
rithm used in RELAX2.3 for decomposing a large circuit into
subcircuits; in Section 4 we examine the effectiveness of the WR
algorithm by analyzing several realistic examples. Finally, in
Section 5 we present some of the most recent work in adapting
the WR algorithm to parallel processors.

2. THE BASIC WR ALGORITHM

The RELAX2.3 program uses the "Gauss-Seidel’ WR algo-
rithm, one of the family of WR methods[3). For that reason,
we will only discuss the "Gauss-Seidel” algorithm although
many of the following results extend to other members of the
WR family.

To describe the algorithm, we will consider it as applied to
the following general system, in which MOS circuit equations
can usually be formulated.

Cvul + fvu)=0; v(Q)=V (2.1)

where C:R"XR” =R** is a diagonally dominant matrix-
value function in which —C;; (v, u) i #j is the total floating
capacitance between nodes i and j. C;{v, u) is the sum of the
capacitances of all capacitors connected to node i, and
f T RIXR" XR™ = R” is a continuous function’each component
of which represents the net current charging the capacilors at
each node due to transistors, other conductive elements. and the
controlled current sources.
The WR algorithm for solving the above system is as fol-
lows:
Algorithm 1 (Gauss-Seidel WR for solving Ean. (2.1))
Comment:
The superscript kK denotes the iteration count,
the subscript i denotes the component index
of a vector and € is a small positive number.
ke0;
Guess waveform v%(¢):¢ € [0.7] such that v%(0) = Vo

—221-

repeat {
kek4+1
foreach (i in N) {
solve
1
2 CiyGh, o whvkat - wE T i
j=t
i
Y CyGh, - wEviat o vE T e Tt
j=it1
FiGh bl v T e) =0

for (v) :t €10.T]), given vF(0) = Vig -
}

} until (max; g ¢, max, e (o)l vE@E) = vi~l1<e)
Note that the differential equation has only one unknown vari-
able vf. The variables v&i', -, v¥~! are known from the
previous iteration -and the variables vi. - - -.v{_; have already
been computed.

In [3]. the WR a]kgorithm was show to have the following
guaranteed convergence property.

Theorem 1: Given a system of equations of the form of Egn.
(2.1) generated by applying nodal analysis to a circuit contain-~
ing capacitors, resistors. and MOS devices, if the MOS devices
are voltage-controlled and have continously differentiable
charge models with diagonally dominant Jacobians, and there is
a grounded capacitor, linear or nonlinear, at every node, then in
Egn. (2.1) C(v .u) € R” is strictly diagonally dominant for all
v € IR" and Lipschitz continuous with respect to v for all v, f
is Lipschitz continuous with respect to v for all u, and the
sequence { v* } generated by the Gauss-Seidel WR algorithm
iven above converges uniformly to the solution of Eqn (2.1)
%or all bounded intervals [0.7] .

In the above theorem it was proved that the WR method is
a contraction map in the following nonuniform norm on

coTIRrR).
OTIR) maxjoze >l f (&

where 5>0 , f(t) € R", and || @]l is a norm on R". Note
that convergence in this norm can be achieved if at each itera-
tion the error is reduced over larger and larger intervals of time.
In some cases the WR iteration waveforms converge in just this
way.

Although this "ponuniform" convergence guarantees that
the WR method is robust, it does not insure computational
efficiency. In fact, the computations performed on the last part
of the time-interval are essentially wasted. To have a better
computational behavior, the WR algorithm should converge
"uniformly", i.e., the error should be reduced over the entire
time-interval at each iteration.

Consider the following definition:

Definition 1: WR Uniform Iteration Factor Let v* :{0,.7]-R" be
the function generated by the k™ iteration of the WR algorithm
applied to a system of the form of Eqn. (2.1). Then the WR
uniform iteration factor, ©y. for the system is defined as the
smallest positive number such that

maxprlvi Hi(e)=v¥ (¢ Nl Sy maxprflvk (¢)—v* 710N

for any & >0, any continously differentiable initial guess ve,
and any piecewise continuous input .

In order for the WR algorithm to converge in a computationally
efficient way, the WR uniform iteration, factor should be less
than 1. This would imply a "uniform’ convergence i.e., the
computed iteration waveform is approaching the exact solution
over the entire interval.

There are two ways to reduce y. The first, discussed in
[4.6]. is to reduce the simulation interval [0.7'] until v is less
than one. The second approach, which we will consider in the
next section, is to partition the circuit into loosely coupled sub-
systems. A combination of the two techniques is needed 1o
allow windows of reasonable size.

3. PARTITIONING

In the basic WR algorithm presented above, the node equa-
tions are solved as single differential equations in one unknown,

and these solutions are iterated until convergence. This kind of
node-by-node decomposition can lead to slow convergence in the
case where a few nodes in a large system are tightly coupled.
For example, consider the simple circuit in Fig. 1. If the floating
resistor connecting the two nodes is large relative to the
grounded resistors, then the WR algorithm using node-by-node
decomposition converges rapidly. However, if the floating resis-
tance is small, then the convergence will be very slow.

As the example above shows, not lumping together tightly
coupled nodes and solving them directly can lead to very slow
WR convergence. For this reason, the first step of an effective
WR-based simulator must be to partition the system, that is, to
scan all the nodes in the system and determine which should be
lumped together and solved directly. Partitioning well is
difficult for several reasons. If too many nodes are lumped
together, the advantages of using relaxation will be lost, but if
any tightly coupled nodes are not lumped to§ether then the WR
algorithm will converge very slowly. In addition. it is

® R3

C1

1

@

cz

1

FTG 1

R2

obviously important that the partitioning step not be computa-
tionally burdensome.

Several approaches have been applied to this partitioning
problem. One simple approach is to require the user to partition
the system [3,5,8] . This technique is reasonable for the simula-
tion of large circuits because large circuits usually are designed
as a collection of small, fairly independent pieces as this makes
the design easier to understand and manage. Unfortunately,
what is a sensible partitioning from a design point of view may
not be a good partitioning for the WR algorithm.

Another approach to partitioning is to examine the topol-
ogy of the circuit to identify functional blocks (i.e. a nand gate
or a flip-flop)[9]. The nodes of each functional block are then
tied together. This type of partitioning is difficult to perform,
since the algorithm must recognize broad classes of functional
blocks. and nonstandard blocks may not be treated properly. In
addition, as the example at the beginning of this section indi-
cates, techniques that examine only the topology of the circuit
may partition the circuit incorrectly.

Since it is the intent of the partitioning to improve the
speed of convergence of the relaxation, it is sensible to partition
a large circuit with this, rather than topology or functionality,
in mind. In this section we will develop an algorithm based on
this idea. As it is difficult to get estimates of the speed of WR
convergence directly, a relationship will be shown between the
convergence speed of WR and that of two simpler iterations.
We will then present techniques for estimating the speed of
convergence for the simpler iterations, and show how they are
used to perform partitioning.

The WR uniform iteration factor y defined in the previous
section is a lower bound on how fast the iteration waveforms
approach the exact solution. A good partitioning algorithm will
keep this y small without generating unnecessarily large subcir-
cuits. Unofrtunately, vy is difficult to estimate directly for a
given problem. However, we have the following theorems
which relate y to iteration factors applied to a simplified system
of equations.

Theorem 2: Let y be the WR uniform iteration factor for a
iven system of equations of the form of Eqn. (2.1) solved on
FO,T]. Then in the limit as 7 — co, ¥ is bounded below by the
relaxation iteration factor of the nonlinear Gauss-Seide] relaxa-
tion applied to the reduced algebraic system f (v u)=0, for

n

v € R" givenanyu € R".

Theorem 3: Let y be the WR uniform iteration factor for a
given system of equations of the form of Eqn. (2.1). Then y is
bounded below by the relaxation iteration factor of the linear
Gauss-Seidel relaxation applied to the reduced algebraic problem
C(y.u)v=b,forv € R" givenany y.u.b € R".

—-222—

Since in Eqn. (2.1) C(v ,¢) is the matrix of linear and non-
linear capacitors, and f (v.u) is the net circuit currents gen-
erated by conductances, the two theorems above indicate that it
is possible to get lower bound estimates of y by examining cir-
cuits where only the capacitances and conductances are indepen-
dently present. These estimates are lower bounds. Hence, to
decrease 'y below a desired o, it is necessary to partition in such
a way that the iteration factors for the Gauus-Seidel iteration
applied to reduced systems are decreased below .

In order to develop an algorithm for estimating the itera-
tion factor for the conductance problem, we will start with a
simple problem for which we can calculate the iteration factor
exactly. We will then apply this result, by analogy, to larger
problems. Consider a simple three-resistor circuit derived by
removing the capacitors from the circuit in Fig. 1. If Gauss-
Seidel relaxation is used to solve this two-node problem then
the iteration equations can be written by inspection as:

phH = 83 vk vEH = 83 phH
(g1%g3) (g2Fg3)
The iteration factor is:
= 83 g3

[(g2tgs) (gi+ga)

‘We use this result to devise a heuristic for larger circuits.
The circuit in Fig. 1 can be used as a simple model for the cou-
R}in between two nodes in a MOS circuit. With this model the
OS transistor will be treated as a nonlinear resistor from its
source to its drain. Coupling between the gate and source and
gate and drain will be considered later. With this
simplification, we can use the following algorithm for partition-
ing circuits with two-terminal resistances.

Algorithm 2 (Conductance Partitioning)

for each (conductive element in the circuit) |
£3 < maximum element conductance over all v .
Remove the element from the circuit.
Replace the rest of the conductances in the circuit
by their minimum values over all v .
Compute g and g, the Norton Equivalent
conductances to ground at the two element terminals.

(., 83 83 _say
(g2tgs) (gi+gy)

Tie the two terminal nodes together,
}

}

Computing the Norton equivalent conductances. Geg , at a
node can be performed using a simple recursive formula if there
exist no loops of conductances among only non-voltage source
nodes. Note that this recursion wifl not be very deep. The
recursion will stop at any MOS transistor, because the model
for the conductance of an MOS transistor at this point in the
computation is zero.

Algorithm 3 (Norton_Equivalent Conductance for Node i)

Geg = 0.0
foreach (conductive element incident at node i) {

G < element conductance
node j < the conductive element’s other node,
If (nodej is a voltage source node) {

Geq «Gegq + G
}

else {
Geg j « Norton equivalent conductance at
node j with this element removed.

Geg —Geg + (G * Gegj) (G + Gegj)
}

If the circuit does contain conductance loops among only
non-voltage source nodes, the above algorithm can still be used
if the recursion is truncated in such a way that no circuit node
is visited twice. In this case, only an estimate of the Norton
equivalent will be computed.

Unfortunately, it is difficult to relate the parameter a to
the iteration factor for the WR, or even the iteration factor for
the conductance problem. We loosely justify its use by the fol-
lowing theorem which applies to a special case of one step of the
algorithm.

Theorem 4: If removing the conductive element under con-
sideration breaks the conductance circuit into two subcircuits
that are connected only at common voltage sources nodes then
the iteration factor computed in Alg. 2 is an upper bound on the
iteration factor for solving the conductance problem by relaxa-
tion across the two subcircuits.

Since the capacitance problem is almost identical to the
conductance problem, the capacitance partitioning algorithm fol-
lows almost the same strategy as the conductance partitioning.
The major difference is that instead of comparing floating capaci-
tances to Norton equivalent conductances, they are compared to
equivalent capacitances. These equivalent capacitances are
entirely analogous to the equivalent conductances, and can be
computed with the same recursive approach used in Alg. 4.

The last step of the partitioning algorithm, is to take into
account the gate-voltage controlled current source between
source and drain. Since the controlled source is a one-way ele-
ment, it is only necessary to take these into account when they
form feedback loops in the circuit. Adding in this last step, we
arrive (finally) at the RELAX2.3 partitioning algorithm.

Algorithm 4 (RELAX2.3 Partitioning Algorithm)

Apply Conductance Partitioning

Apply Capacitance Partitioning

repeat { /* Find nested tight feedback loops. */

for each gate node of a MOS transistor:

If that transistor’s drain node or source node
is contained in group of nodes which contains
a gate node of another transistor whose drain
or source node is in the first transistor’s
group, tie the two groups together

until (no more groups are tied together)

Along with applying the partitioning algorithm to a
variety of MOS digital circuits, we have also applied this parti-
tioning algorithm to a large VHSIC memory circuit with 2900
nodes and over 3500 parasitic components. The results matched
our own best attempts to partition the circuit in as many
instances as we had the patience to check. However, we stiil
suspect that if the method is applied to larger problems. the
subcircuits produced may become quite large. Should this be
the case, we plan to extend the present algorithm by performing
an additional pass over only the excessively large subcircuits,
and subpartitioning them using more sophisticated algorithms.
In particular, to use better estimates of the equivalent conduc-
tances and capacitances, as we feel the present algorithm may be
unnecessarily conservative.

4. EXPERIMENTAL RESULTS USING RELAX2.3

RELAX2.3 has been applied to several industrial circuits
and compared to SPICE2G.6. Both programs use the Shichman-
Hodges drain current MOS model. SPICE2G.6 uses the Meyer
capacitance model, and the RELAX2.3 program uses a levell
Yang-Chatterjee charge conserving model. In an attempt to
separate the gains attiributable to a faster implementation of
direct methods versus the gains attributable to, WR. we also
compared the running times of RELAX run in "SPICE-mode",
i.e., when no partitioning is applied, with the WR-mode. Some
of the circuits presented were run at Texas Instruments where
RELAX was compared to the version of SPICE modified by
Texas Instrument. In these runs, both programs use the com-
plete Yang-Chatterjee MOS model.

Circuit Devices SPICE2 RELAX32.3(DIR) | RELAX2.3(WR)

uP Control 232 1400s* 90s* 45s*
Cmos Memory 621 10400s* 995s* 308s*
4-bit Counter 259 4300s* 540s* 299s*
Digital Filter 1082 18000s* 1800s* 520s*
Encode-Decode 3295 115,000s* 5000s* 1500s*
Eprom 348 694** 531%* 349+
Inverter Chain 250 4395** 98s** 38s**

VHSIC Memory 2980 15670** 15830** 126 50**

*On Vax11/780/Unix using S-H model
**On Vax11/780/VMS using Y-C model and TISpice

-223-

5. PARALLEL WAVEFORM RELAXATION ALGORTIHMS

Relaxation techniques are particularly promising for paral-
lel processing because the computationaY method decomposes
naturally the problem. Recent results from a parallel imple-
mentation of the Iterated-Timing Analysis (ITA) method for
simulating large circuits indicates that significant parallelism is
exploitable when relaxation methods are used[10).

The WR algorithm is unique among relaxation methods in
that each time a subcircuit is solved, its transient behavior is
computed for a large portion of the simulation interval, rather
than just for a short increment in time. For this reason, WR
seems to be a very promising relaxation method for parallel
processors because the overhead to set up the subcircuit for
simulation, often a major bottleneck for parallel computations,
is an insignificant portion of the time required to calculate the
long transient response waveform.

An obvious way of parallelizing WR is to apply the
Gauss-Jacobi version of WR. In this algorithm, the relaxation
makes use of the waveforms computed at the previous iteration
for all the subcircuits. Then, all the subcircuits could be
analyzed independently by different processors. One of the
difficulties in applying this algorithm is that MOS digital cir-
cuits are highly directional, and, if this directionality is not
exploited slow convergence may result. For example, consider
applying WR to compute the transient response of a chain of
inverters. If the first inverter's output is computed first, and
the result is used to compute the second inverter's output,
which is then used for the third inverter, etc.. the resulting
waveforms for this first iteration of the WR algorithm will be
very close to the correct solution. However, if the second and
third inverter outputs are computed in parallel with the first
inverter’s output, the results will not be close to the correct
solution because no reasonable guess for the inverter inputs will
be available. For this reason, a%ter partitioning, RELAX2.3 ord-
ers the subcircuits so that the directionality of the circuit is fol-
lowed as closely as possible.

It is possible to parallelize the WR algorithm while still
preserving a strict ordering of the computation of the subcircuit
waveforms (Gauss-Seidel) by pipelining the waveform compu-
tation. In this approach, one processor would start computing
the transient response for a subcircuit. Once a first timepoint is
generated, a second processor could begin computing the first
timepoint for the second subcircuit, while the first processor
computes the second timepoint for the first subcircuit. On the
next step a third processor could be introduced, to compute the
first timepoint for the third subcircuit, and so on. By doin% so,
some of the advantage of WR for parallel processors is lost.
Scheduling must be done every time a timepoint is computed,
rather than over a whole waveform.

Since following a strict ordering of the relaxation compu-
tation (Gauss-Seidel) does not allow for simple parallelism, and
computing the next iteration waveforms for every subcircuit at
once (Gauss-Jacobi) allows for greater parallelism, but is not
very efficient (converges more slowly), we consider a mixed
scheme. The approach is based on the observation that large
digital circuits tend to be quite "wide", i.e., the outputs of gates
fan out to more than one subcircuit. It is possible to order the
computation so that subcircuits in parallel chains” can be com-
puted in parallel, but the directionality of the circuit can still be
followed by the relaxation computation. This will not allow
for as much parallelism as the Gauss-Jacobi scheme, but should
preserve most of the efficiency of the Gauss-Seidel scheme.

We are experimenting with a fprobabilistic approach to
attempting to follow the ordering of the subcircuits. In this
approach a queue of subcircuits in order is created. Then as
processors become free, they grab the next subcircuit in the
queue until the queue is exhausted. If the queue is empty and
all the processors are finished, the queue is reset, and they all
start picking up subcircuits again.

This algorithm is probabilistic in the sense that there is no
uarantee that the transient computation for a subcircuit will be
Inished before its output is needed by another subcircuit, but it
is likely to have already finished if the circuit is very wide com-
pared to the number of processors. And since all the processors

must finish before the next iteration is begun, no subcircuit will
be more than one iteration behind. We will be implementing
this algorithm on the Sequent Balance 8000 parallel computer,
and will have experimental results to present at the Conference.

6. CONCLUSIONS AND ACKNOWLEDGEMENTS

The newest feature of the RELAX2 series of programs, a
more general partitioner, has been described. In addition, some
of the issues connected with parallelizing WR have been
presented. Expansion of the scope of the RELAX2 program con-
tinues, bipolar circuits., more advanced mosfet models, and
relaxation acceleration techniques are being added. A parallel
version of the RELAX2.3 program is under developement. and
will be tested on a 32-bit microprocessor-based multicomputer,
the Sequent Balance 8000.

The authors wish to thank Richard Newton, J. Deutsch,
and R. Saleh for the many discussions on relaxation-based tech-
niques and parallel processing, K. Kundert for the sparse matrix
package and P. Moore for the input processor used in Relax2.3,
and all the other members of the CAD Research group at
Berkeley for their support. In addition, we would like to thank
F. Odeh and A. Ruehli at IBM's Yorktown Research group for
many valuable discussions.

This research has been sponsored by DARPA under con-
tract NESC-N39, and grants from the IBM company, Philips,
Texas Instruments and MICRO.

REFERENCES

[1lL.w. Nagel, "SPICE2: A computer program to simulate semiconduc-
tor circuits,” Electronics Research Laboratory Rep. No. ERL-MS520,
University of California, Berkeley, May 1975.
[2] C.W. Gear, "Numerical Initial Value
Differential Equations,” Prentice Hall, 1974,
[3] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, "The
waveform relaxation method for time domain analysis of large scale
integrated circuits,” JEEE Trans. on CAD of IC and Syst., Vol. 1, n. 3,
p.131-145, July 1982,
4] J. White and A. L. Sangiovanni-Vincentelli, "RELAX2: A Modified
Waveform Relaxation Approach to the Simluation of MOS Digital Cir-
cuits” Conf. Proc. IEEE ISCAS, Vol. 2, pp756-759, Newport Beach, CA,
May, 1982. -
[5]1A. R. Newton, "The Simulation of Large Scale Integrated Circuits”,
Memorandum UCB/ERL M78/52, July 1978,
[6] J. White and A. Sangiovanni-Vincentelli, "Relax2.1 - A Waveform
Relaxation Based Circuit Simulation Program” Proc. 1984 Int. Custom
Integrated Circuits Conference Rochester, New York, June 1984,
[7] P. Yang and P, Chatterjee; "SPICE Modeling for Small Geometry
MOSFET Circuits,” IEEE Transactions on Computer-Aided Design of
Inze%r;zted Circuits and Systems, Vol, CAD-1, No. 4, October 1982,
p.169-182
8] P. Defebve, J. Beetem, W. Donath, H.Y. Hsieh, F. Odeh, A.E. Ruehli,
P.K. Wolff, Sr., and J. White, "A Large-Scale Mosfet Circuit Analyzer
Based on Waveform Relaxation" International Conference on Computer
Design, Rye, New York, October 1984,
[9] C. H. Carlin and A. Vachoux, "On Partitioning for Waveform
Relaxation Time-Domain Analysis of VLSI Circuits” Proc. 1984 Int.
Symp. on Circ. and Syst., Montreal, Canada, May 1984.
{10]'J. T. Deutsch "MSPLICE" University of California, Berkeley, Elec-
tronics Research Laboratory, Memorandum No. UCB/ERL-M84/40

Problems for Ordinary

224~

