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Abstract

Two techniques are considered for accelerating
relaxation-based circuit simulators. First, a new algo-
rithm that attempts to combine the advantages of the
Waveform Relaxation algorithm and Iterated Timing
Analysis relaxation algorithm for moderately coupled
multirate systems is presented. The algorithm is based
on the extension to function spaces of the relaxation-
Newton methods popular for solving algebraic systems.
This Waveform Relaxation-Newton(WRN) technique is
combined with an iterative stepsize refinement scheme
which improves the accuracy of the numerical integration
as the relaxation iterations approach convergence. As a
second approach to accelerating relaxation algorithms,
two techniques for parallelizing the classical WR algo-
rithm are described, one based on mixed Gauss-
Seidel/Gauss-Jacobi techniques, and the other on pipelin-
ing the computation. Finally, a technique for parallelizing
WRN is described.

1. INTRODUCTION

The implicit multistep integration algorithms used in
general purpose circuit simulation programs, like
SPICE2[1], have proved to be reliable, but are computa-
tionally expensive when applied to large systems. This is
because each step of the numerical integration requires
the implicit solution of a large nonlinear algebraic system.
If the circuit simulation program is intended for the
simulation of mostly MOS digital circuits, then it is possi-
ble to exploit the properties of these types of circuits to
improve its efficiency. In particular, that MOS digital cir-
cuits can be broken into loosely or uni-directionally cou-
pled subsystems can be exploited by iterative decomposi-
tion algorithms, and that the different nodes in an MOS
digital circuits change at very different rates can be

exploited by multirate integration algorithms.

A variety of algorithms have been applied to the
simulation of MOS digital circuits that attempt to exploit
its loosely coupled and multirate nature[2,3,4]. We will
focus on three relaxation-based methods. First is the
Iterated Timing Analysis (ITA) algorithm used in the
SPLICE1 and SPLICEZ2[5] programs, the second is the
Waveform Relaxation(WR) algorithm[6] used in the
RELAX2[7] program, and the third is a new algorithm
based on combining some of the advantages of of ITA
and WR. The paper is organized as follows. Section 2
contains a brief description of the first two relaxation
algorithms along with a short discussion of their relative
merits. In Section 3 we present a Waveform Relaxation-
Newton {WRN)[8,9,10] algorithm that uses an iterative
refinement strategy for selecting the numerical integration
timesteps, and present experimental results that demon-
strate its relative advantages compared to ITA and WR.
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In Section 4 three parallel algorithms are presented, two
based on the WR algorithm, for which experimental
results will be presented, and one based on the WRN
algorithm.

2. A BRIEF INTRODUCTION TO RELAXATION TECH-
NIQUES

Given mild assumptions, the differential equations
that describe MOS digital circuits have the following gen-
eral form(7],

g(e(8)) =f(v(8), v(8))  z(0) =z, (1)
where v(¢) is usually the vector of node voltages, u(¢) is
a set of inputs, f(v(t), u(t)), is usually the vector of the
sums of currents incident at each node and ¢(»(t)) is the
vector of node charges.

If the Backward-Euler implicit integration method is
applied to solving Eqn. (1), the following algebraic equa-
tion results

F(o(t+h)) = (2)

q(v(t+h)) - q(v(t)) = A f{v(t+h),u(t+h)) ==0.
In standard circuit simulation programs like SPICE2, the
algebraic system represented by F(v(¢+4)), in Eqn. 2, is
solved for v(t+h) using a modified Newton-Raphson
algorithm, each step of which requires the evaluation of
part of F and part of its Jacobian matrix, followed by a
matrix solution.

Il Eqn. 2 is solved using a nonlinear relaxation-
Newton algorithm{12], as in the I'TA algorithm, each ele-
ment of the »(¢t+h) vector, v{t+k), is updated using only
the F; equation, and the s* diagonal term of the Jacobian
matrix of F.

Another approach to performing relaxation decom-
position is the Waveform Relaxation Algorithm {(WR), in
which the decomposition i5 performed before discretizing
with a numerical integration method, i.e. the relaxation
algorithm is applied directly to the differential equation
system. Each element of the vector of waveforms v(¢),
v(t), is updated by using a numerical integration algo-
rithm to solve only the i* differential equation.

As mentioned in the introduction, one of the pro-
perties of MOS digital circuits that relaxation methods are
intended to exploit is that the different state variables of
the system change at very different rates. By solving the
differential equations in a decomposed fashion, the WR
algorithm intrinsically allows different timesteps to be used
for each differential equation in the system, so that each
can use the largest timestep that accurately reflects the
behavior of its associated state variable.

The ITA algorithm as implemented in the
SPLICE1.6 and SPLICE2 programs also attempts to
exploit this multirate property, by using an event-driven




selective trace algorithm[5]. Only the node voltages
which are changing are updated at each time point. The
remaining node voltages are updated using their respec-
tive values at the previous timepoint. In this way, the
selective trace ITA algorithm takes advantage of a system
for which most of the variables remain at an equilibrium
state but does not take full advantage of a system for
which the state variables have different rates of motion,
but are not at equilibrium.

Both the ITA and WR algorithms attempt to exploit
the loose or unidirectional coupling of MOS digital cir-
cuits, in that the relaxation converges rapidly when
applied to loosely coupled systems. There are several
types of circuits that can be divided into subcircuits of
reasonable size only if moderate coupling between subcir-
cuits is allowed. If a relaxation algorithm is used for such
a circuit, many iterations will be required to achieve con-
vergence. If such a moderately coupled system does not
exhibit multirate behavior, then the ITA algorithm will
be more efficient, because in I'TA the computational cost
of performing an iteration is lower than in WR. For ITA,
only one Newton iteration is performed with each relaxa-
tion iteration. For the WR algorithm, each iteration
involves solving nonlinear differential equations. These
must be solved using an implicit integration method, each
timestep of which will require that an algebraic system be
solved by a Newton method, and to insure stability, the
Newton iteration must be carried not just one step, but to
convergence.

3. WAVEFORM RELAXATION-NEWTON AND ITERA-
TIVE STEP REFINEMENT

It is possible to reduce the cost of each of the WR
iterations by following the same strategy used in the alge-
braic relaxation-Newton algorithms. Instead of solving
the nonlinear differential equations exactly with each
relaxation iteration, they can be solved approximately, by
performing one step of a function space or Waveform
Newton method[13]. In presenting the precise algorithm
for this Waveform relaxation-Newton algorithm (WRN)
the following notation will be used.

b (e) =(wf(), ..ok (), oF (1), ek ()) T (3)

Using this notation, the WRN algorithm for solving sys-
tems of the form of Eqn. 1 is given below.

Algorithm 1 (Gauss-Seidel WRN Algorithm)

ke—0;
guess waveform v%(¢) ; ¢ € [0,7) such that v%(0) =v,
repeat {

ke—k+1

forall (¢in N ) {

solve
L a0 () + SLA ) (ab0) - o) ] -

FAPH(0) + S ki) (sh vp1) =0
for ( v¥(¢t) ; t € {0,T}),
with the initial condition v}(0) ==v; .
}
}

until ( maX; g ;< «MaX; g [0, 7| [u¥( t) - of 1< e )

) The amount of computation performed in the early
iterations of the WRN can be reduced by using coarse
numerical integration timesteps to solve the differential
relaxation equations initially, and then refining the

timesteps as the iterations progress. Specifically, the first
relaxation iteration is computed with a numerical integra-
tion timestep equal to a user-supplied plotting increment.
For subsequent relaxation iterations, the integration
timesteps are chosen to be the same as the those in the
previous iteration unless the a posteriori local truncation
error estimates for the timestep from the previous itera-
tion is too large. In that case, half the previous iteration
timestep is used. This strategy has the advantage that, in

general, timesteps will be placed more efficiently to con-
trol truncation error than if the standard predicted trunca-
tion error criteria is used. This is because the timestep
selection is based on more accurate a posteriori error esti-
mates available from previous relaxation iterations.

In Table 1 below, a comparison between the three
methods is made for several different industrial circuits.
The first example is a three inverter ring oscillator circuit.
A substantial amount of floating capacitance makes the
three inverters moderately coupled, but because the three
nodes are oscillating at the same frequency, the circuit is
not multirate. As can be seen in the table, the ITA algo-
rithm is more efficient than WR. The second and third
examples, a critical path from a microprocessor and the
logic for a successive approximation register, are
moderately coupled, and exhibit substantial multirate
behavior. As expected, for these two circuits WR is more
efficient than ITA. Because WRN allows full multirate,
and has a low cost per iteration, the WRN a,lgorithnjll is
more efficient than either WR or ITA in all cases.

Table 1 - SPLICE2 vs RELAX2.3 vs WRN

Circuit Mosfets | Nodes | SPLICE2 | RELAX2.3 | WRN
Ring Osc. 7 3 9.8 27 7.2
uP Control 116 66 194 160 137
SAR Rom 344 151 1025 1010 618

*On Vax11/785 running Unix

4. PARALLEL WAVEFORM RELAXATION ALGO-
RITHMS

Relaxation techniques are particularly promising for
parallel processing because the computational method
naturally decomposes the problem. Recent results from a
parallel implementation of the ITA algorithm indicates
that significant parallelism is exploitable when relaxation
methods are used[11].

An obvious way to parallelize the WR. algorithm is
to apply the Gauss-Jacobi version of WR. In this algo-
rithm, the relaxation makes use of the waveforms com-
puted at the previous iteration for all the subcircuits. All
the subcircuits can then be analyzed independently by
different processors.

One of the difficulties in applying the Gauss-Jacobi
WR algorithm ,is that MOS digital circuits are highly
directional, and, if the relaxation computation does not
follow the signal flow, many iterations will be required to
achieve convergence. Since large digital circuits are not
one long chain but tend to be quite "wide”, i.e., the out-
puts of gates fan out to more than one gate, it is possible
to order the computation so that subcircuits in parallel

“chains” can be computed in parallel, but the directional-
ity of the circuit can still be followed by the relaxation
computation. This will not allow for as much parallelism
as the Gauss-Jacobi scheme, but can preserve some of
the efficiency of the Gauss-Seidel scheme.

It is also possible to parallelize the WR algorithm
while still preserving a strict ordering of the computation
of the subcircuit waveforms by pipelining the waveform
computation. In this approach, one processor would start




computing the transient response for a subcircuit. Once a
first timepoint is generated, a second processor could
begin computing the first timepoint for the second subeir-
cuit, while the first processor computes the second
timepoint for the first subcircuit. On the next step a
third processor could be introduced, to compute the first
timepoint for the third subeircuit, and so on.

The two algorithms were implemented on a 9 processor
configuration of the Sequent Balance 8000 computer
(larger configurations are available) a single bus shared-
memory computer. The Balance system has a mutual
exclusion primitive (or lock) that can be used to insure
that only a single processor has access to protected sec-
tions of data. Both algorithms were implemented by tak-
ing advantage of the shared-memory architecture. A
created list of subcircuits was placed in shared memory to
allow any processor to compute the result for any subcir-
cuit. A global queue was used and the locking mechan-
ism applied to insure that no two processors could be
working on the same subcircuit at the same time.

The results from several experiments for the two
algorithms are given in Tables 2 and 3. As the results
from the Eprom and microprocessor control circuit indi-
cate, the timepoint pipelining algorithm makes much
more efficient use of the available processors. In fact, as
Table 3 shows, the timepoint pipelining algorithm run-
ning on the Balance 8000 runs substantially faster than
the serial WR algorithm running on a Vax/780.

Table 2 - Gauss-Seldel /Gauss-Jacobi WR on several # of Processors.

Circuit FET's 1 3 6 9
uP Control 66 595 338 270 258
Eprom 348 512 317 286 266

Table 3 - Timepoint Pipelining WR Algorithm on several # of Processors.

Circuit FET'’s 1 3 6 9 VAX/780
uP Control 116 704 247 159 149 240

Eprom 348 745 265 185 182 212
Cmos Ram 428 337¢ 1217 642 496 960

The WRN algorithm combined with the iterative
refinement stepsize strategy is more efficient than the
WR algorithm for more tightly coupled systems, and it
also has certain features that can be exploited on a paral-
lel processor. To demonstrate this, consider solving the
WRN iteration equation for vf using the backward-Euler
numerical integration algorithm. If 7; is the time of the
7* timestep, the equation for v¥(r,) is

dg; af;

[ Gar(or) = (b)) N erh)= o)) (4)

=hf(v""(rj)) ~ gi(vF(t4h))

+ fli(vk"(rz'— ) + g%(”k".(‘ﬁ:1))(”{“1(74‘—1) - ‘U-'Hl("f—l))

where v*¥(¢) is as defined in Eqn. 3. The step refinement
strategy implies that before beginning the numerical com-
putation of the v} waveform, the number of timesteps
that will be used, m, is known, as is each of the time
discretization points, 7;, 1 < 7 < m. Also, v*'(¢) is
known before beginning the computation of v*. As exa-
mining Eqn. 4 reveals, the information available makes it
possible to compute most of what is required to produce
the m timepoint values, v¥(r;), 1 < ;< m, in parallel.

_ _

5. CONCLUSIONS

A new approach to relaxation algorithms based on
waveform relaxation-Newton and an iterative step
refinement strategy has been described, and its perfor-
mance compared to existing relaxation algorithms. In
addition, some of the issues connected with parallelizing
WR  have been described, and experimental results
presented. Expansion of the scope of the relaxation tech-
niques continues to include bipolar circuits and more
advanced mosfet models. In addition, more advanced
multirate timestep techiques are being investigated for
the ITA algorithm and relaxation acceleration techniques
are being added. Finally, additional parallel techniques
are being explored to exploit different types of multipro-
cessors architectures.
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