FAG6 - 9:00

Proceedings of 24th Conference 7
on Decision and Control
Ft. Lauderdale, FL - December 1985

WAVEFORM RELAXATION TECHNIQUES AND THEIR PARALLEL IMPLEMENTATION

Alberto L. Sangiovanni-Vincentelli

Depariment of Flectrical Engineering and Computer Sciences

University of California at Berkeley. CA 94720

Jacob White

1.B.M. Watscn Research Center

Yorktown Heights. New York, 10598

Summary. Because of the high cost of fabricating an Integrated
Circuit(1C), it is important to verify the design using simulation. There are
a wide variety of techniques for simulating integrated circuit designs. but
the most accurate is to construct the system of nonlinear ordinary
differential equations that describe a given circuit, and solve the system
with a numerical integration method. This approach, referred to as circuit
simulation, is computationally expensive, particularly when applied to
large circuits. To reduce the computation time required to simulate large
MOS circuits. new numerical integration algorithms based on relaxation
techniques have been developed. These techniques can reduce the simula-
tion time as much as an order of magnitudes over standard circuit simula-
tion: programs. In addition. they are particularly suited for parallel imple-
mentation. In this paper we will focus on the Waveform Relaxation (WR)
family of algorithms. Algorithms in this family will be reviewed, conver-
gence theorems will be offered. and their implementation on a parallel pro-
cessor presented,

1. Introduction

Reliable and accurate simulation tools must plav a key role in
Integrated Circuit (IC) design. This is because fabricating an integrated cir-
cuit is expensive and often time-consuminy (on the order of months). In
addition, minor errors in the integrated aircuit design can not usually be
corrected after fabrication. Therefore, design errors must he uncovered
before fabrication, and this can be done through the use of simulation

There are a wide variety of techniques for simulating imegrated cir-
cuit designs. but none are as accurate, reliable, and technology independent
as constructing the system of nonlinear ordinary differential equations that
describe a given circuit. and solving this system with a numerical integra-
tion method. This approach, referred to as circuit simulation. has been
implemented in a variety of programs such as SPICE [NAG75]. These pro-
grams use a standard, or direct. techniques based on the foliowing four
steps:

i) An extended form of the nodal analysis technique to construct a system
of the differential equation system from the circuit topology.

ii) Stiffly stable implicit integration methods, such as the Backward
Difference formulas, 1o convert the differential equations which describe the
svstem into a sequence of nonlinear algebraic equations.

i1} Modified Newton methods to solve the algebraic equations by solving a
sequence of linear problems.,

iv) Sparse Gaussian Elimination to solve the systems of linear equations
generated by the Nowton method.

Circuit simulation tools based on the above technigues are heavily
used. Companies spend many millions of dollars per vear in computer
costs. and a number of companies run over 60,000 simulations. 'month.
However, these programs were designed in the early 1970’ for the simula-
“tion of circuits with a few hundred transistors at most. Thev are now
being applied. somewhat inappropriately, tc the task of simulating digital
and analog \'LSI circuits, which can contain more than 50,000 devices. As
problems increase in size, it becomes less economically feasible 1o use the
above direct techniques. SPICE [NAG75] can take several hours (on a
VAX11/780) to simulate circuits with only a few hundred devices,

There are two reasons why the direct approach described above can
become nefficient for large systems. The most obvious reason is that sparse
matrix solution time will grow super-linearly with the size of the problem.
Expeiimental evidence indicates that the point where the matrix solution
time begins to dominate is when the system has over several thousand
node<. and this is the size of systems that are beginning to be simulated for
state of the art IC designs.

I he direct methods become inefficient for large problems also because
for larpe differential equation systems, the different state varijables are
changing at very different rates. Direct application of the integration
method furces every differential equation in the system to be discretized
identically, and this discretization must be fine enough so that the fastest

CH2245-9/85/0000-1544 $1.00 © 1985 IEEE 1544

changing state variable in the system is accurately represented. If it were
possible to pick different discretization points, or time-steps, for each
differential equation in the system so that each could use the largest time-
step that would a.curately reflect the behavior of its associated state vari-
able, ther: the efficiency of the simulation would be greatly improved.

Several modifications of the direct method have been used that both
avoid large sparse matiiv solutions, and allow the individual equations of
the system to use different time-<teps fCHA7S. NEW 78, GEABO. SAKSO,
DEMS0, LEL82. NEW 83, SAL83, WHI84. ('HI84]). One class of such tech-
nigues, Waveform Relaxation [LEL82, WHI84, WHI8Sa. \\'HIBSb], is based
on "lifting” the Gauss-Seidel and Gauss-Jacobi relaxation techniques for
solving large algebraic systems to the problem of solving the large systems
of ordinary differential equations associated with MOS digital circuits.
Briefly, the idea of these relaxation technique is to first break a large circuit
into loosely coupled subcircuits. Then the behavior of each subcircuit, over
some interval of time, is calculated by "guessing” the behavior of the sur-
rounding subcircuits over the same interval of time. The responses for each
subcircuit are used to improve these guesses, and the response is recalcu-
lated. The procedure is iterated until the convergence is achieved for each
subcircuit over the interval of time. Other relaxation technigues such as
the Gauss-Seidel-Newton algorithm [ORT70} can be applied to solve the
nonlinear system of algebraic equations in place of the standard Newton-
Raphson technigues.

Two circuit simulation programs have been developed at Berkeley
using relaxation techniques: RELAX, based on Waveform
Relaxation[LEL82, WHI84, NEWS83)] and SPLICE, based on Iterated Timing
Analysis (ITA) [NEW83, SA183], a form of Gauss-Seidel-Newton

technique. On a uniprocessor, these programs can show speed improve-
ments over direct methods of up to an order of magnitude even for prob-
lems with onlv a few hundred devices. In addition, both the ITA and
Waveform Relaxation are particularly amenable to use on multiprocessors
because the computational method already decomposes the problem. A dis-
tributed form of the ITA algorithm. called DITA. has been recently
developed and a prototype DITA simulator. the MSPLICE program, has
been implemented[DFUSAL

In this paper. we review the basic Waveform Relaxation alporithms
and their numerical properties. In addition, we examine the issues involved
in the implementation of these algorithms on parallel processors. In partic-
ular, Section 2 is dedicated to the basic Waveform Relaxation algorithms
and their convergence properties. In Section 3. we present numerical tech-
nigques that make the basic algorithms particularly efficient for the analysis
of large scale circuits. In Section 4, two parallel algorithms are presented
and the architecture used for the implementation of the algorithms is dis-
cussed. In Section S, concluding remarks and future directions are dis-
cussed.

2. Waveform Relaxation Algorithms

We will start this section with a simple illustrative example, and
then present the general WR algorithm. Consider the first-order two-
dimensional differential equation in: x (t) € R?on:z € [o.7].

1= filxnxnt) x1(0)=xy (2.1a)

x(0) = x5 (2.1%)

The basic idea of the waveform-relaxation algorithm is to fix the waveform
x2:[0,7]> R and <olve Eqn. (2.1a) as a one dimensional differential
equation in x](l). fhe solution thus obtained for x](t) can be substi-
tuted into Egqn. (2.1b) which will then reduce to another first-order
differential equation in one variable. x,(z). Egn. (2.1a) is then re-solved
using the new solution for XQ(I) and the procedure is repeated.

= folxy,x20)

Alternatet. fs the waveform x (¢) in Egn. (2.1a) and fix x4(2)
in Egn. (2.1b) and solve both one dimensional differential equations simul-
taneously. Use the soiution obtained for x; in Eqn. (2.1b) and the solu-
tinn obtained for x; in Eqn. (2.1a) and re-solve both equations.

I
®
¥
5
;

1t

the
m

m
iy
won

nd

. O~

talt

1b)

1811
tal
NS L
dey
ed

¢)
ul-
Ju-

In this fashion, iterative algorithms have been constructed. Either
replaces the problem of solving a differential equation in two variables by
one of solving a sequence of differential equations in one variable. As
described above, these two waveform relaxation algorithms can been seen
as the analogues of the Gauss-Seidel and the Gauss-Jacobi techniques for
solving nonlinear algebraic equations. Here, however, the unknowns are
waveforms (elements of a function space), rather than real variables. In
this sense, the algorithms are techniques for time-domain decoupling of
differential equations,

The most general formulation of a system of nonlinear differential
equations is the following implicit formulation:

F(x@)xtt)ult))=0 x(0) = x,, (2.2)

where x(t) € R" on ¢ € [07]:u() €R on: € [0.7] s piecewise
continuous; and F: R" x R” x R” = R” is continuous,

In order 10 guarantiee that WR applied to Eqn. (2.2) will converge to
the system’s solution, we first must guarantee that Egn. (2.2) has a solu-
tion. if we require that there exists a transformation of Eqgn. (2.2) 1o the
form ¥ = f (y.u) where f is Lipschitz continuous with respect to y
for all u. then a unique solution for the system exists/HAL69]. .Allhouélx
there are many sets of broad constraints on F that guarantee the existence
of such a transformation, the conditions can be difficult to verify in prac-
tice. In addition, for the above system, it is difficult to determine how to
assign variables to equations when applying the WR algorithm. That is,
when solving the F; equation of the system in the iteration proce: . what
x, variable should be solved for implicitly. If a poor choice is made, the
relaxation may not converge[LEL82]. .

Rather than carefully considering the existence and assignment ques-
tons, which will complicate the analysis that follows without lending
much insight, we will consider the following less general form, in which
many practical problems, particularly circuit simulation, can be described.,

Cl@@)uleNs t)=f (x(),ult) x(0) = xq (2.3)

where x(1) € R" ont € [o.7]: u(t) €ER onz € 077 s piecewise
continuous; C: R" xR — R™" is such that C(x, 2)"} exists and is
uniformly bounded with respect to x .4 : and JiR' 2R =R is glo-
bally Lipschitz continuous with tespect o x forallu(z) € R’ .

The fact that C(x . u) has a well-behaved inverse pua:antees the
existence of a normal form for Fyn.(2.3). and that x (¢) € IR” is the vec-
tor of state variables for the system. Then as f is globally Lipschitz with
respect to X for all u. C(x.u)7! is uniformly bounded, and u(t) is
piecewise continuous, there exists a unique solution 1o Egn. (2.3).

The WR algorithm for solving the above system is as follow's:
Algorithm 2.1 (WR Gauss-Seidel Algorithm for solving Eqn. (2.3))

Comment:
The superscript k denotes the iteration count,
the subscript { denotes the component index
of a vector and € is a small positive number.

k«<0;

guess waveform x%:) :z € [0.7]

such that x %(0) = x,

(for example, set x%(z) = xo. 2 €[0T]);

repeat {
kek+1
foreach (i € {1,.n }{
solve
: i
LGyl xbadqh s+
7=l
- &
z CI_] (xl s rxi"xik-f_ll » . ’xlf —]'u)x_/‘ —l-
J=itl
& k= -
il xfxf 3 -k Tu) =0

for (x,‘(t):r €l0.7]), with the initial condition xH0) =

}

| until (max,<, ¢, max, ¢ IOI][X}(T)= XA €e)
that is, until the iteration converges,

Note that the differential equation in Algorithm 2.1 has only one unknown
‘ariable x,‘ . The variables x,‘ﬁl T Xy ~!are known from the previous
eration and the variables Xy, ,xil_] have already been computed.
\Isu.. the Gauss-Jacobi version of the WR Algorithm for Egn. (2.3) can be
oblained from Algorithm 2.1 by replacing the foreach statement with the
foralj statement and adjusting the iteration indices.

Under rather mild conditions, in general satished by circuits of
s1, a global convergence theorem can be proven.

Neyes

15645

Theorem 2.1 [WHI85a,LEL82] If in addition to the conditions on C (x .«)
and f listed above, the matrix C (x u) is strictly diagonally dominant
uniformly over all x and v and Lipschitz continuous with respect to x for
all u then the sequence of waveforms {xl" | generated by the Gauss-Seidel
and the Gauss-Jacobi versions of Algorithm 2.1 converge uniformly to the
solution of Egn. (2.3) for all bounded intervals [0,7] for all initial guesses
that satisfy the initial conditions.

This convergence theorem can be proven by first showing that if
Clxu)is diagonally deminant, then there exists a bound on the it
generated by the WR algorithm that is independent of k Using this
bound, it can be shown that the assumption that C (x ,u) is Lipschitz con-
tinuous implies there exists a norm on IR” such that for arbitrary positive
integers j and k :

12573 =%/ P € yllef (=27 @I+l e)—x TP +

+ llx% (2)=x/ (e)

for some y<1 and Z,l, < coforallt € [0,T]. In the properly chosen
norm [oll, on C([0,7 1.IR"), the above equation implies that

llf ¥ =g/ 0, < izt =27 0,

and therefore the sequence { X* } converges by the contraction mapping
theorem. Asx®(0) = x ¢ for all k, { x*) converges as well,

3. Techniques to Speed-up WR Algorithms

In this section, we analyze several of the implementation techniques
used 1o improve the efficiency of the basic WR algorithm, and give theorems
that indicate the strengths or limitations of these technigues. We begin by
considering breaking the simulation interval into pieces, called windows,
and demonstrate that the technique can be used to reduce the number of
relaxation iterations required to achieve satisfactory convergence. We then
examine how 10 partition large systems into loosely cvupled subsystems.
Finally, we present an ordering algorithm that accelerates WR convergence
by exploiting the directional nature of the Gauss-Seidel relaxtion algo-
rithm,

3.1. Windowing

Consider the following nonlinear ordinary differential equation in
x1(t)xo(z) € R with input v € IR that approximately describes the
cross-coupled nor logic gate in Fig. 3.1.1a (the approximate eguations
represent a normalization that converts the simulation interval [0.7'] 1o

[o.1).

Xp=(5~xq) — x4(x5)° — Sxqu (3.1.1)

%= (5=x5) — xo(x,)

x,{0)=5.0 x,(0) = 0.0

The Gauss-Seidel WR Alporithm given in Section 2 wa« used to solve
for the behavior of the cross-coupled nor gate circuit approsimated by the
above small svstem of equations. In Fig. 3.1.1b plots of the input ulz).
the exact solution for xl(.z), and the relaxaticn iteration waveforms for
x1(z) for the 5th, 10th and 20th iterations are shown. The plots demon-
strale a property typical of the WR alporithm when applied to systems
with strong coupling: the difference between the iteration waveforms and
correct solution is not reduced at every lime point in the waveform.
Instead, each iteration lengthens the interval of time, starting from zero,
for which the waveform is close to the exact solution.

As an example of "better” convergence, consider the following
differential equation in Xj.Xz,X3 with input v that approximately
describes the shift register in Fig. 3.1.2a (here the simulation interval [0.7]
has been normalized to [0,1])

=050 —x) —x3(@)~(x;—x3) (3.1.2)

X, = (xy— x3)

X3 = (5.0~ x3) — x3(x5)?

Xig -
x(0) = 0.

The Gauss-Seidel WR Algorithm given in Section 2 was used 1o solve the
original system approximated by the above system of equations. The input
u (7)), the exact solution for x;(f), and the waveforms for x 1{(2) com-
puted fiom the first, second, and third iterations of the WR algorithm are
plotted in Fig. 3.1.2b. As the plots for this example show, the difference
between the iteration waveforms and the correct solution is reduced
throughout the entire waveform.

Perhaps surprisingly, the behavior of the first example is consistent
with the WR converpence theorem. even though that theorem states that
the iterations converge uniformly. This is because it was proved that the
WR method is a contraction map in the following nonuniform norm on

c{o.T]IR"):

max, e Il f ()]

where >0 , f(z) € R", and |l ¢|l is a norm on IR® Note that
G)“ can increase as €” without increasing the value of this function
space norm. If f (¢) grows slowly, or is bounded, it is possible to reduce
the function space norm by reducing ”f ()l only on some <mall interval
in [0.7] . though it will be necessary to increase this interval io decrease
further the function space norm. The waveforms in the more <lowly con-
verging example above, converge in just this way; the function space norm
is decreased after every iteration of the WR algorithm because significant
errors are reduced over larger and larger intervals of time. The examples
above lead to the following definition:

Definition 3.1.1: If the WR alporithm is used 1o solve a given a differential
svstem of the form piven in Eqn. (2.3). then WR uniform iteration factor
for the differential system is defined as the smallest y > O such that

maXj s a0) = 2l €y maxperylixt () = TN

where x(r) € R" on ¢ €[0T] is the solution 1o Eqn. (2.3):
)Y ER ont € {0,7) is the £ iterate of Alporithm 1: and el is
any norm. Futhermore, the differential svstem is said 1o have the strict
WR contractivity property on [0,.7]. if the WR algorithm applied to the
system is a contraction map in a uniform norm on [0.7] . i.c. for some
norm on R" . y<1. If the WR algorithm applied 1o the svstem is a con-
traction in a uniform norm on [0.7] for anv 7 > (then we say that the
system has the strict WR contractivity property on [0,00) .

For a system of equations to have the strict WR contractivity pro-
perty on [0,00) it must be more than just loosely coupled. In addition, the
decomposed equations solved at each iteration of the waveform relaxation
must be well-damped, so that errors due to the decomposition die off in
time. instead of accumulating or growing. As the crossed nand pate exam-
ple indicates, many svstems of interest do not have the strict WR contrac-
tivity property on [O,T) forall 7 < eo. However, we can prove that any
system that satisfies the WR convergence theorem will also have the strict
WR contractivity property on some nonzero interval.

Theorem 3.1.1: For any system of the form of Eqn. (2.3) which satisfies
the assumptions of the WR convergence theorem (Theorem 2.1) there exists

E\ T 7 O such that the system has the strict WR contractivity property on
0r].

Theorem 3.1.1 puarantees that the WR algorithm will be a contrac-
tion mapping in & uniform norm for any system, provided the interval of
time over which the waveforms are computed is made small enough. This
suggest that the nierval of simulation [0.7] should be broken up into
windows [0.7,] [r,. T L [7. 4. 7.1 where the size of each win-
dow iv vmall enouph so that the WR alporithm contracts uniformly
throughura the entine window . The smaller the window is made, the faster
the conve ence However, ac ne window size becomes smaller. the advan-
tages of the wa.eltcrm relaxation aie lo<t Scheduling overhead increases
when the window s become smaller. since cach subsystem must be processed
at each itaiation in every window. [t the windows are made very small,
time -steps chosen to calculate the waveforms will be limited by the win-
dow size rather than by the local truncation error, and unnecessary calcu-
lations will be performed.

The tower bound for the region over which VR contracts uniformly
given in Theorem 3.1.1 is too conservative in most cases to be of direct
practical use. As mentioned above, in order for the WR algorithm to be
efficient it is important to pick the largest windows over which the itera-
tions actually contract uniformly, but the theorem only provides a worst-
case estimate. Since it is difficult to determine @ priori a reasonable win-
dow size 1o use for a given nonlinear problem, window sizes are usually
determined dynamically, by monitoring the computed iterations{WHI84].
Since Theerem 2.1 guarantees the convergence of WR over any finite inter-
val, a dynamic scheme does not have to pick the window sizes very accu-
rately. The only cost of a bad choice of window is loss of efficiency. the
relaxation will s1ill converge.

3.2. Partitioning

In the basic WR algorithm presented above. the node equations are
solved as single diff erential equations in one unknown. and these solutions
are ilerated until convergence., This kind of node-by-node decomposition
can lead to slow convergence in the case where a few nodes in a large svs-
tem are tightly coupled. For example, consider the circuit in Fig. 3.2.1. a
simple three resistor, two capacitor circuit. If the foating resistor connect-
ing the 1wo nodes is large relative to the grounded resistors. then the WR
alporithm using node-by-node decomposition converges rapidly. However,
if the floating resistance is small, then the convergence will be very slow,

For this reason, the first step in almost every WR-based program is to
partition the svstem, that is. to scan all the nodes in the system and deter-
mine which should be lumped together and solved directly. Partitioning
well is dificult for several reasons. If 100 many nodes are Jumped 1ogether.
the advantages of using relaxation will be lost. but if any tightly coupled
nodes are not lumped together then the WR algorithm will converge very
slowly. And since the aim of WR is to perform the simulation rapidly. it
is important that the partitioning step not be computationally burdensr—=

Several approaches have been applied to this partitioning problem.
One simple approach is to require the user to partition the system [WHIR3,
DEF84, CAR84). This technique is reasonable for the simulation of large
circuits because large circuits usually have already been broken up intc
small, fairly independent pieces to make the design easier to understand
and manage. Unfortunately, what is a sensible partitioning from a design
point of view may not be a good partitioning for the WR algorithm.
Another approach to partitioning is to examine the topology of the circuit
to find functional blocks (i.e. a nand gate or a flip-flop)[LEL82b]. The
nodes of the svstem are then grouped together based on being a member of
a functional block. This type of partitioning is difficult to perform, since
the algorithm must recognize broad classes of functional blocks, and non-
standard blocks may not be treated properly.

Since it is the intent of the partitioning to improve the speed of con-
vergence of the relaxatior. 1t i« sensible to partition a large circuit with
this, rather than topology or tunctionality, in mind. In addition, tech-
niques that examine only the topology of the circuit can not, in general,

partition the circuit in such a way that the relaxation converges rapidly. It.

is essential to examine the numerical value of the components, We have
developed algorithms based on this ideal WHI85b).

As it is difficult to get estimates of the speed of WR convergence
directly, a relationship will be shown between the convergence speed of the
WR and that of two simpler problems, We will then present techniques
for estimating the speed of convergence fo: the simpler problems, and show
how they are used to perform partitioning.

The WR uniform iteration factor y defined in the previous section is a
lower bound on how fast the iteration waveforms approach the exact solu-
tion. A good partitioning algorithm will keep this y small without gen-
erating unnecessarily large subcircuits.

As mentioned at the beginning of this section, y is difficult to esti-
mate directly for a given problem. However, we have the following
theorems which relate this y to iteration factors for reduced algebraic prob-
lems.

Theorem 3.2.1: Let ¥ be the WR uniform iteration factor for a given

system of equations of the form of Eqn. (2.3) solved on [0.T], and assume
that all v.u such that f (v ,u) =0 are points of attraction for the
differential equation system. Then in the limit as 7 —voo 7y is bounded
below by the iteration factor for solving the reduced problem f (v u)=0,
forv € R" givenanyu € R”.

Theorem 3.2.2: Let y be the WR uniform iteration factor for a given a sys-
tem of equations of the form of Egn. (2.3). Then Yy is bounded below by
the relaxation iteration factor for solving the reduced problem
C(y uh=b,forv € R" givenany y u,b € R".

The proofs of these theorems are straight-forward. and will no! be
presented here,

Since in Eqn. (231) C{v) is the matrix of linear and nonlinear
capacitors, and f (v ,u) is the net circuit currents generated by conduc-
tances, the 1wo theorems above indicate that it is possible to get lower
bound estimates of 7y by examining the capacitances and conductances
independently. And since these estimates are lower bounds, if thev are
then used to drive a partitioning algorithm, the partitioner will not gen-
erate unnecessarily large subcircuits, That is, in order to decrease Yy, the
WTR uniform iteration factor, it is necessary to partition in such a way that
the iteration factors for the reduced problems are decreased.

In order to develop an algorithm for estimating the iteration factor
for the conductance problem, we will start with a simple problem for
which we can calculate the iteration factor exactly, and then apply this
result, by analogy, to larger problems. Consider a simple three resistor cir-
cuit derived by removing the capacitors from the circuit in Fig. 3.2.1. I
Gauss-Seidel relaxation is used to solve this two node problem then the
iteration equations can be written down by inspection as:

i+l - 83 !

= v
Vi (81+835 2

r+1 — 83 £ +1

v = v
2 (82““83) !

The iteration factor can be computed exactly and is:

&3 g3
i (g2rgs) (gitgs)

At this point we introduce a heuristic; the circuit in Fig. 3.2.1 can be
used as a simple model for the coupling between two nodes in a MOS cir-
cuit. With this model the MOS transistor will be treated as a nonlineas
Lesistor {rom its source to its drain. Coupling between the gate and source
and yate and drain will be considered in the next section on ordering. \Yi’Ih
this «simplification. we can use the following algorithm fos partitioning cir-
cuits with two-terminal resistances.

1546

:
3
F,
§
{

¥

$3,

pe
itc
nd

gn

4

oo A S

Algorithm 3.1 (Conductance Partitioning)
for each (conductive element inthe circuit)|

g3 < maximum element conductance over all v.
Remove the element from the circuit.
Replace the rest of the conductances in the circuit
by their minimum values over 211+
Compute g ; and g, the Norton Equivalent
conductances 1o ground at the two element terminals.

Comment:
o is user-supplied, and is set 10 be the largest
acceptable contraction factor. Typical value is 0.3,

(52 83 5 o)
(g,rg) (gitga)

Tie the two terminal nodes together.

The Norton equivalent conductances at a node can be approximated
wing a simple recursive formula [WHIg5b].

Unfortunately, it is difficult to relate the partitioning criteria & 1o the
eventual iteration factor for the WR, or even the iteration factor for the
conductance problem. This relationship can be determined only for special
cases.

Since the capacitance problem is almost identical in nature to the con-
ductance problem, the capacitance partitioning algorithm follows almost
the same strategy as the conductance partitioning. The major difference is
\hat instead of comparing floating capacitances to Norton equivalent con-
ductances, they are compared to equivalent capacitances. These equivalent
capacitances are entirely analogous to the equivalent conductances, and can
be computed with the same recursive approach used for the conductances.

Along with applying the partitioning algorithm to a variety of MOS
digital circuits, we have also applied this partitioning algorithm to 2 large
VHSIC memory circuit with 2900 nodes and over 3500 parasitic com-
ponents, The results matched our own best attempts to partition the cir-
cwit in as many instances as we had the patience to check. However, we
still suspect that if the method is applied to larger problems, the subcir-
cuits produced may become quite large. Should this be the case, we plan 10
extend the present algorithm by performing an additional pass over only
the excessively large subcircuits. and subpartitioning them using more
sophisticated algorithms. In particular, to use better estimates of the
equivalent conductances and capacitances, as we feel the present algorithm
may be unnecessarily conservative.

In addition, the partitioning algorithm presented here. is static, i.e.,
the circuit is partitioned only once at the beginning of the simulation by
using the worst case values of the devices. It is not frequent that all the
devices attain their worst case values at the same 1ime. It would be more
effective 1o partition the circuit dynamically, Le., to update the subcircuits
during the analysis. The problem with this approach is overhead sincc the
cost of repartitioning the circuit is not negligible. We have developed a
dynamic partitioning scheme for bipolar circuits where a worst case
analysis would very often end up with very large subcircuits, We plan to
extend this algorithm to MOS circuits.

3.3. Ordering

When applying the Gauss-Seidel WR algorithm to a decomposed sys-
tem of differential equations, the order in which the equations are solved
can strongly effect the number of WR iterations required to achieve
satisfactory convergence. In order to explain this effect, consider the case
where there are only grounded two-terminal capacitors for each node of the
tircuit, Thus, the matrix C (x &) of Eqn. (2.2) is diagonal. Then let the
dependency matrix of f in Egn. (2.2) be defined as a zero-one matrix
P =[p,] such that p;; =1 if f; depends on x;, pi; = 0 otherwise.

. Note that P also represents the zero-nonzero structure of the Jacobian of

If P is lower triangular, then one iteration of the Gauss-Seidel WR
algorithm will produce the exact solution to the original differential equa-
hon system (in practice, two iterations will be performed because a second
iteration is needed to verify that convergence has been achieved). If P is
7ol lower triangular, but the dependency of the f; component of f on Xx;,
i<j, is "weak", then the result of one iteration of the Gauss-Seidel WR
algorithm will be close 1o the exact solution, and subsequent jterations will
converge rapidly. For this reason, when applying relaxation techniques 10
the solution of circuit equations, the technique can be made much more
efficient by reordering the equations to make P as close to a lower triangu-
lar matrix as possible.

As discussed in Section 3.1, subsets of nodes in a large circuit may be
mutually tightly coupled, and in order to insure that the relaxation algo-

rithm converges rapidly when applied to such a circuit, these subsets are
grouped together into subcircuits and solved with direct methods. This
corresponds 1o block relaxation method. and an ordering algorithm applied
to a system beiny solved with block relaxation should attempt to make f
as block lower triangular as possible.

In some sense, partitioning and ordering the subsystem of equations
‘Theyv are both attempting 10 eliminate

are performing similar functions,
a large circuit being

slow relaxation convergence due 10 tWo nodes in
tightly coupled. ‘There is. however. a «e¢y difference. 1f. fo1 example. X, 1s
is strongly dependent on X, then the

strongly dependent on x . X
¢ two nodes together into one subcir-

partitioning algorithm will t.mp th
cuit. However. if x, is strongly dependent on X, but x; is weak (v depen-
dent on x;, then the two nodes w ill not be lumped together, but the order-
ing algorithm <hould insure that the system is block lower triangular by
ordering the equations so that x, is computed before computing X;.

Resistors and capacitors do not exhibit the kind of unidirectional cou-
pling that is of concern 1o the ordering algorithm. In fact, the only element
type of concern to the oxdering algorithm are transistors, because they exhi-
bit unidirectional coupling. That is, the drain and source terminals of an
MOS transistor are strongly dependent on the gate terminal of the transis-
tor, but the gate is almost independent of the drain and source. Clearly,
this implies that the subcircuits containing the given transistor’s drain or
source should be analyzed before the subcircuit containing the given

transistor’s gate.

To devise an algorithm to carry out this task, it is convenient 1o
introduce the dependencygraph of the partitioned circuit. If we represent
the circuit with a directed graph G (X .E), where the set of nodes, X, is in
one-to-one correspondence with the subcircuits obtained by a partitioner,
and where there is a directed edge between the node corresponding to sub-
circuit i and the node corresponding to subcircuit j if there is a transistor
whose gate is in subcircuit i and whose drain or source are in subcircuit j.
1f 1he graph is acy clic, it can be levelized, i.e. all the nodes can be ordeted in
levels so that a node in level i can have incoming edges only from nodes in
levels lower than i. The ordering so obtained is the one used by
RELAX2.3 10 process the subcircuits,

However, there may be cases where cycles exist in the graph. In this
case, the ordering algorithm either changes the subcircuit definmtions by
grouping two or more subcircuits together, effectively performing part of
the partition task, or it discards edges to remove the cycles. In both cases,
at the end of this process we obtain an acyclic graph and an ordering of the
subcircuits corresponding 1o the leveling of the {perhaps altered) graph.

One guestion remains. which is when 10 repartition 10 remove a feed-
back loop versus breaking the loop. As the example in the section on win-
dowing indicates, if signal propagation around the feedback loop is fast
compared to the size of the window. slow nenuniform convergence will
result. For this reason. the ordering algorithm makes the decision about
partitioning based on an estimate of the delay around the feedback loop. If
it is smaller than one percent of the simulation interval. the {eedback loop
is removed by repartitioning. If the delay is larger. then the feedback loop
is broken by removing an edge from the directed graph.

Algorithm 3.3.1 (Relax2.3 Subcircuit Ordering Algorithm)

/* Initialization. */
ordered_list = NULL;
unordered_list = List of subcircuits from the partitioner;
/* Main Loop. */
while (unordered_list '= NULL) {
none_ordered == FALSE;
while (none_ordered == FALSE) {
none_prdered == TRUE;
fer each (subeircuit in the unordered_list) {
if (all subdiscuits on incoming arcs are on ordered_list) {
none ordered = FALSE;
append to_vnd_of_ordered_list(subcircuit);
delete_j1om_unordered_list(subcircuit);

}
}
if tunoider list = NULL){
/* Must be a feedback joop. */
tound_loop = FALSE:
depth = 1;
while (found_loop == FALSE) {
depth = depth + 1
for each (subcircuit in the unordered list) {
if
(1here exists a loop of length = depth) {
found_loop == TRUE;
if (delay around the loop >
0.01 * the simulation interval) {
break the loop;

1647

else {
collapse loop into one subcircuit;

4. Parallel Implementation of WR Algorithms

Exploiting parallel computation for circuit simulation is extremely
important because the size of the circuits for which circuit simulation has
been applied has grown at rate that far exceeds the increase in computa-
tional power due 10 technological improvement. The only way to keep pace
with the increasing demand is to be able 1o apply many processors 1o the
problem, and the number of processors that can be used must scale up with
the size of the problem.

In this section, the implementation of two WR-based parallel circuit
simulation algorithms on a shared-memory computer will be described.
We start by presenting a brief overview of the aspects of a shared-memory
computer that effect the algorithm implementation, and then describe the
two parallel WR algorithms, one based on using a mixture of Gauss-Seidel
and Gauss-Jacobi relaxation, and the other based on pipelining the
waveform computation.

4.1. The Shared-Memory Computer

To write efficient programs for serial computers, knowledge about the
specific details of the architecture is useful, but not essential. This is not
the case for programming on a parallel computer, Specific details about the
architecture can influence decisions about the implementation of an algo-
rithm, and can even affect the choice of algorithm.

The WR parallel alporithms have been implemented on the Sequent
Balance 8000. a shared-memory parallel computer. In this subsection we
describe those aspects of the architecture that affected this implementation

The kev problem in designing a parallel processor is that of commun-
ication between the processors. One simple approach is 10 desipn a parallel
computer by pathering togethe many standard serial computers, and con-
necting them together with a communication networh. 1<ualiv such com-
puters are referved 10 as message-passing parallel computers. because data is
transferred between the many processors by passing messages on the com-
munication network., The disad. antage of such a system is that in order to
move data from the memory of one processor into the memory of the
second processor, both the transmitting and receiving processors must be
involved.

Amother approach to the problem of communicating between parallel
processors is to redesign the memory system, so that aggregate memory of
all the processors is directly addressable by any one of the individual pro-
cessors. Such a system is referred 1o as a shared-memory system because
the processors are all sharing a single resource, the memory. The main
advantages of a shared-memory machine is that it is not necessary 1o expli-
citly transfer data from one processor to another. When a processor needs
data from another processor, it simply reads from the memory locations in
whick the other processor has writien. This also allows for more dynamic
algorithm structures, because it is not necessary to determine beforehand
which processors will need the results of a given calculation. The disad-
vantages of the shared-memory computer are that any processor can des-
troy the contents of all memory, and guaranteed synchronization between
processors is not easy without special purpose hardware. We will discuss
the synchronization issue further below.

There are fundamentally two choices for MEeMOry organization in a
shared memory multi-processor. Fither the entire memory is ceniralized
and all the processors contend for access 10 it or the memory is distributed
so that each processor "owns” a portion of the shared memory. i.e. a pro-
CessOT can access ils memory more quickiy than it can access memory
owned by other processors.

The two different organizations can impact the structure of parallel
algorithms. In fact. if the memory is distributed among the PIOCESSors, a
parallel algorithm performs better if the data for the computation can be
partitioned so that each processor uses only the data in its own portion of
the shared memory, On the other hand, partitioning the data according to
the criterion above may cause some of the parallelism of a given algorithm
10 be Jost.

The memory on the Sequence Balance 8000 is centralized, i.e., all the
processors contend for one large shared memory. For such an architecture,
there is no advantage to partitioning the data among the processors, as they
will still have to contend for the same centralized memory pool. Because
of the memory contention problem, most implementations of shared-
memory computers that use a centralized memory include a large cache
memory with each of the processors. The cache mechanism is intended to
exploit reference locality. In other words, it is assumed that each of the

1548

processors is actively using and reusing only a small amount of data. Al
with standard caches, the processor caches buffer the most recently usel
data requested from the central memory. Thus, it is expected that each g
the processor finds its data in the cache and need not access the centrg
mMemory.

Using caches on a parallel computer is not as straight-forward as onj
serial computer, Each of the many caches is supposed to maintain a copy
of a part of the data stored in central memory. Because any of the proceg
$ors can write in any memory location at any time, it is possible for th
taches to loose consistency i.e., the contents of a cache may not reflect th
current contents of the central memory. For example, if the contents of
memory location A is in the cache for processor 2 and processor 1 updatel
-A. then the data in the cache for processor 2 will be incorrect.

There are a variety of schemes for avoiding this problem, but we wj
only mention the technique applied in the computer used for experimentad
tion. The scheme is simple, all the caches monitor all the writes to centry]
memory {rom any of the processors. If a cache contains the location beings
written to, it updates its own copy of the data in the given location, }
this way, it is assured that the data in all the caches is current.

This cache architecture can be exploited 1o avoid excessive memoryg
trafic when many processors are waiting for a processor to complete a com¥¥
putation and to write the result in the central memory. The processorii
could continuously interrogate the central memory to check whether thy
processor has written its data Hewever, in this way, excess memory trafidl
is created and the computing processor has to slow down. I the cachig
architecture described above is used, the excess traffic is eliminated. Eachl
waiting processor keeps reading a location which is in its own cache, an "
therefore does not generate any central memory traffic. When the comput4
ing processor finishes, each of the other processor caches will spot the \\'ril
to the monitored location in central memory and each cache will update jig
own copy of the data. The waiting processors will therefore be mads}
immediately aware of the completion of the computing processor, but wj
not have impeded the progress of the computing processor by generati

excess memory trafhc.

The last aspect of the paraliel computer architecture that we considey
is that of mutual exclusion or locking. In almost all parallel programs
there are critical sections that must be performed serially. When a criticald
section is executed, only one processor must be active. To make sure thatyg
no other processor is executing that section, a test-and-set instruction i¢
used.

If a processor executes a test-and-set instruction on a given location in
memory, the contents of the location is returned to the processor and:
simultaneously, if the location was not set, it is set. This mechanism can:
be used to perform locking as follows. A particular location in memory is
used as the lock. If a processor is about to execute a critical section of
parallel program, it first executes a test-and-set on the lock location. If the
result of the test-and-set indicates that the location was previously unset,’
the processor has the lock. If not, the processor must wait until the lock’
location becomes free, and then retry the test-and-set. Once a processor hag;
the lock, it can safely executes the critical section as no two Processors ca
have the lock at the same time. Once the processor finishes the critical sec
tion, it clears the lock location and then other processors can get the lock
and execute the critical section. :

4.2. The Gauss-Seidel-Jacobi Algorithm

An obvious way of parallelizing WR is 10 apply the Gauss-Jacobi
version of WR, In this algorithm, the relaxation makes use of the
waveforms computed at the previous iteration for all the subsystems.
Then all the subsystems could be analyzed independently by different pro-
cessors. One of the difficulties in applying this algorithm is that MOS digi
tal circuits are highly directional, and, if this directionality is not3
exploited, slow convergence may result. For example. consider applying:;
WR to compute the transient response of a chain of inverters, If the first
inverter’s output is computed first, and the result is used 1o compute the
second inverter’s output. which i< then used for the third inverter, etc.. the
resulting waveforms for this first iteration of the WR algorithm will be
very close to the correct solution. However, if the second and third invert
ers’ outputs are computed in parallel with the first inverter’s output, the
results will not be close to the correct solution because no reasonable puess
for the inverters’ inputs will be available.

Following a strict ordering of the relaxation computation (Gauss~
Seidel) does not allow for computing entire waveforms in parallel, and,
computing the next iteration waveforms for every subcircuit at oﬁ“
(Gauss-Jacobi) allows for substantial parallelism, but is not very efﬁc{’“’ 1§
(converges more slowly). To preserve the efficiency of the sz\lss-se_l‘l"’l
algorithm and allow for some of the parallelism of Gauss-Jacobi, a mixed
approach must be employed.

Examining large digital circuits, we have observed that.the d::pfﬂ'
dency between inputs and outputs of the subcircuits tend to be "wide'. it
there are several "parallel” chains of gates, with some interaction a'mol-!,
chains. It is then possible to order the computation so that subcircuits

As
18¢ed
I of
itra}

ma
opy
ces.
the
the
-~ of

ey

paralicl "chains’ can be computed in parallel. but the serial dependence
inside a chain is preserved. This will not allow for as much parallelism as
the Gauss-Jacobi scheme, but should preserve most of the efficiency of the

Gauss-Seidel scheme.
In Algorithm 4.1, we present an approach that follows as much as

ible the ordering used in the Gauss-Seidel WR algorithm implemented
in RELAX2.3. In this algorithm, subcircuits are ordered according to the
tevelling of the dependency graph. In particular, no subcircuit at level i is
anatyzed before all the subcircuits at previous levels have been examined.
of course. subcircuits at the same level can all be processed in parallel
without affecting substantially the convergence of the algorithm (it may
affect stightly the convergence because of weak coupling between subcir-
cuits at the same level that is not represented in the dependency graph). If
«¢ have several processors and few subcircuits at a particular level. then, if
«¢ wait for the level to be fully analyzed before moving to the next level,
se may have many idle processors. We address this problem by letting the
processors analvze subcircuits at the next levels before the present level is
fuliy examined. Because the analysis of these subcircuits in the Gauss-
seidel algorithm needs the waveforms of the subcircuits at previous levels
iba' may not be available, the waveforms computed at the previous itera-
sior. are used. This scheme introduces some Gauss-Jacobi steps” in a gen-
eral Gauss-Seidel scheme. We force all the processors 1o synchronize at the
end of the iteration. i.e. if there are no subcircuits left to analyze in the
ordered list (actually the data structure used for this ordered list is a
queue), then the processors that finish their jobs are left idle until all the
processors end up beiny idle. At that point, the queue is reinitialized and
all the processors "grab” a subcircuit from the queue. This strategy makes
sure that the steps taken inside an iteration are either Gauss-Seidel or
Gauss-Jacobi steps. Note that the global convergence properties of WR
algorithms s1ill hold. the speed of convergence may be slower though when
wveral Gauss-Jacobi "steps” are taken by the algorithm. These steps are
fewer if the number of subcircuits at any level is substantially larger than
the number of processors. We cannot predict a priori how many Gauss-
Jacobi "steps” will be taken. because this depends on the time spent in pro-
cessing the various subcircuits. This time is a random variable due to the
many unpredictable factors affecting the computation.

The atiributes of the parallel architecture of the machine used for our
experiments have been considered in the algorithm. First, the data describ-
ing the subcircuits and the computed waveforms are stored in the central
shared memory. 1o be accessed as needed. Note that when a.processor is
free and wants 10 process a circuit, it has to access the queue to find a sub-
dreuit waiting to be analyzed. If two processors access the queue at the
same lime, we may have that the same subcircuit is processed by 1wo pro-
wessors, Thus, whenever a processor is picking up a subcircuit from the
queue, it locks the queue so that no other processor can access il until he
has finished. At that point, the active processor unlocks the queue and the
other processors can access the queue. Each of the processors waits for the
queue to be free by examining the lock variable in a tight loop. As men-
tioned above, this exploits the nature of the cache consistency strategy.
Finally. in this case it is not necessary to separately control access to the
waveforms. Since the waveforms will only be written as a result of the
computations performed on their associated subcircuits, and a waveform is
associated with only one subcircuit, the mutual exclusion of the subcircuit
queue will prevent writes from colliding.

Algorithm 4.1 (Jacobi/Seidel Based Parallel WR)

/* Initialization. Both subcircuits and waveforms in shared-memory. */
queue = ordered_list_of subcircuits;

/* Parallel ileration loop. All processors execute. */
while (all_converged == FALSE) {
if (processor == 1) {
reset_gueue();
idle_count = 0;
}
/* If idle_count != # of processors, some processor is still com-
puting. */
while(idle_count = number of processors) {

/* Tight loop waiting for queue to unlock. */

while(test-and-set{ queuelock) == set) {};

/* Queue is locked, get next subcircuit */

NextSub = Get_next_gueue_entry();

if(NextSub == NULL) {
increment(idle_count);
clear(queuelock);

} else {

/* There is another subcircuit on the queue. */
clear(queuelock);
Compute_Subcircuit_Waveforms(NextSub);
Check_Waveform_Convergence(NextSub);

1649

4.3. The Time-point Pipelining Algorithm

It is possible to parallelize the WR algorithm while still preserving a
strict ordering of the computation of the subcircuit waveforms (Gauss-
Seidel), by pipelining the waveform computation. In this approach, one
processor would start computing the iransient response for a subcircuit,
Once a first time-point is generated, a second processor could begin compul-
ing the first time-point for the second subcircuit, while the first processor
computes the second time-point for the first subcircuit. On the next step a
third processor could be introduced. to compute the first time-point for the
third subcircuit, and so on.

Conceptually, the operations of a given processor in a parallel time-
point pipelining algorithm are quite simple. The algorithm is set up by
establishing both the space in shared memory for storage of the iteration
waveforms, and a buffer or queue with the list of subcircuits. Each of the
processors then starts by taking a subcircuit from the gueue. The indivi-
dual processors examine their respective subcircuit’s external waveforms 1o
see if the waveform values needed to compute the next integration time-
step are available. If so, the next time-step for the subcircuit is computed.
Otherwise, the subcircuit is returned to the queue and the processor tries
again with another subcircuit from the queue., As time-points are com-
puted, more of the subcircuits will have the information needed to compute
their own time-points,

As one might expect, a practical lime-point pipelining algorithm is
more complicated that the conceptual algorithm. Perhaps the most obvious
difficulty is that there is a tremendous overhead in having every processor
search through all the subcircuits 1o find one of the few for which a time-
point can be computed. It is possible to reduce the number of candidate
subcircuits a processor must search by only considering those subcircuils
for which at least one of the external waveforms has more lime-poinis
than 1t had when the subcircuit was last processed. Clearly this will avoid
having the processors continuousiy rechecking subcircuits for which no new
information is avasjable, and therefore no new time-step could be com-
puted.

This kind of selective search algorithm can be implemented by alter-
ing the way the queue of subcircuits is used. When a processor discerns
that it is not possible to compute a new lime-point for a subcircuit. instead
of returning the subcircuit 10 the gueue. the subcircuit is temporarily dis-
carded, If a processor succeeds in compuling & time-point for a subcircuit,
those subcircuits that are connected 1o the given subcircuit, referred 1o as
the fanouts of the subcircuit, are added to the queue (Of course. the
fanouts that are already on the gueue are not duplicated}). In this way, the
only subcircuits that will be on the queue are those for which it is likely
that the waveform values needed 1o compute a next time-point will be
available.

Another aspect of the time-point pipelining algorithm that increases
the exploitable parallelism at the cost of slightly complicating the algo-
rithm is to allow the time-point pipelining 10 extend across iteration boun-
daries. For example, consider a chain of two inverters, and assume that it
takes two time-steps to compute each of the inverter outputs. As before,
the second time-step of the first inverter can be computed in parallel with
the computation of the first time-step of the second inverter. Then, while
the second time-step of the the second inverter is being computed, there is
enough information to compute the first time-step of the first inverter for
the second WR iteration.

This enhancement doesn’t really complicate the conceptual algorithm,
until one considers the question of when to stop. For a long chain of
inverters, allowing the pipelining to extend across iteration boundaries can
easily allow for the first inverter to be many iterations ahead of the last
inverter. Since WR convergence can only be determined when all the
waveforms for a given iteration have been computed, it may well be that
the WR iteration being computed for the first inverter is many iterations
beyond what is necessary to achieve satisfactory convergence. The
difficulty is that this fact will not be discovered until much later, when all
inverter outputs have been computed for the iteration for which satisfac-
tory convergence is achieved.

In this case, the algorithm will still produce correct solutions. but
unnecessary computations will be performed and efficiency will be
degraded. The unnecessary computations are reasonably simple 1o avoid,
by not allowing any subcircuit to start on iteration N +1 until nonconver-
gence of some waveform of iteration N has been detected. It is. of course.
important to discover as quickly as possible if it will be necessary 10 com-
pute iteration NV +1 so that the pipelining of that iteration can begin. For
this reason, in the time-point pipelining algorithm presented below. conver-
gence is checked on a time-point by time-point basis. immediately after a
time-point is computed.

Algorithm 4.2 (Time-point Pipelining WR Algorithm)

/* Initialization. Both subcircuits and waveforms in shared-memory. */
gueue = ordered_list_of subcircuits;
idle_count = O
/*
Max_iter_so_far indicates the iteration after the last one for which

nonconvergence has been detected.
*/
max_iter_so_far = 1.
/* Parallel iteration loop. All processors execute, */
/% 1f idle_count !'= # of processors, some processor is still computing, */
while (idle_count != number of processors) {
/* Tight loop waitiny for queue to unlock. */
while (test-and-set{ queuelock) == set) {1
I¥
Queue is locked, pget next subcircuit in the queue on which the
work that might be performed is for an iteration that is no more
than one bevond the maximum iteration for which nonconvergence
has been detected.
*/
NextSub = Get_next_gueue_entry(max_iter_so_far);
if (NextSub == NULL) {
increment(idle_count);
clear{queuelock);

else {

/*
There is another subcircuit on the gueue whose iteration is not
beyond max_iter_so_far.

Relaxation-based algorithms are finding their way in the industrial
community. Much work remains to be done to improve the speed of the
algorithms. In particular, more sophisticated partitioning algorithms
should be devised. The use of multi-processors and special purpose
hardware for circuit simulation has attracted the attention of many
researchers. Our results are preliminary. We are carrying out experiments
on a variety of different architectures to investigate the relationships
between algorithms and computer architecture, In particular, new algo-
rithms will be studied for the hypercube architecture of the Intel iPSC and
of a massive parallel computer under development at International Think-
ing Machines.

The work on relaxation-based simulation has been carried out in col-
laboration with a number of colleagues and students. It is our pleasure 1o
mention the interaction with Prof. Richard Newton and his students. in
particular Res Saleh. Some of the numerical analysis aspects of Waveform
Relaxation have been developed in collaboration with F. Odeh of IBM. Dis-
cussions with Prof. W. Kahan are gratefully acknowledged. Ken Kundert
and Peter Moore have contributed to the development of RELAX2.3. Guy
Marong has developed a version of RELAX for bipolar circuits. Donald
Webber has implemented a relaxation-based simulator on the International
Thinking Machine massive parallel computer, Finally, we would like 10
thank Shiva Multisystems for the use of their equipment and facilities, and

*
/clear(queuelock): Sequent Computers for the use of their multiprocessos system.

/% This research has been sponsored by DARPA under contract NESC-
Compute as many time-points as possible with available N39, IBM, Philips Research Labs, and a grant from the MICRO program of
waveform values, the State of California.

*/

repeat {

/*

Check 10 see if external values needed to compute the next

time-step are available. Table 4.1 - Gauss-Seidel/Gauss-Jacobi WR on several # of Processors.
K (NexiSub) Circuit FET s 1 3 6 9
;;rzi:nzs‘iiﬁ%s}ﬁm{‘\‘—S‘ep Nextsubl: uP Control 66 595 338 270 259

o ; 12 317 286 266

Compute_Next_Step{ NextSub): Eprom 348 R

converged = Check_Step Convergence{NextSub):

/*

Keep max_iter_so_far ahead of the nonconverged iterations.

*/

if ((converged == FALSE) and (NextSub.iteration_count ==

max_iter_so_far) {

increment(max_iter_so_far);
} ' - T 7 Table 4.2 - Time-point Pipelining WR Algorithm on several # of Processors.
enqueue_fanouts{ NextSub); Circuit FET's 1 3 6 9 VAX/780

} uP Control 116 704 247 159 149 240

until (cando == FALSE) Eprom 348 745 265 185 182 212

} CMOS Ram 428 3379 1217 642 496 960
}
4.4. Experimental Results
As mentioned above, the two algorithms were implemented on a 9 References B

processor configuration of the Sequent Balance 800C computer (larger
confipurations are available) The results from several experiments for the
two algorithms are given in Tables 4.1 and 4.2, As the results from the
Eprom and microprocessor control circuit indicate, the time-point pipelin-
ing algorithm makes much more efficient use of the available processors. In
fact. as Table 4.2 shows. the time-point pipelining algorithm running on
the Balance 8000 runs substantially faster than the serial WR algorithm
running on a VAX/780.

A second point should be made about the time-point pipelining exam-
ples. The speed-up does not remain linear to nine processors. but starts to
drop off after seven processors. This is surprising. given the size of the
examples, but not when the type of circuit being simulated is considered.
For the biggest example, the CMOS RAM, the partitioning algorithm pro-
duces approximately 75 subcircuits, and this would indicate that a speed-
up of 75 should be obtainable, or at least approachable. However, this rea-
soning ignores one of the features of the WR algorithm: only those portions
of the circuit that are active are processed. For digital circuits, usually less
than ten percent of the circuit is active. This implies that, for the CMOS
RAM example over any given interval, roughly seven subcircuits are active
and, hence, involved in the computation. Therefore only a speed-up of
seven could be expected.

5. Conclusions

We have presented an overview of Waveform Relaxation algorithms
and of their numerical properties. In addition, techniques to speed up the
execution of the algorithms have been introduced. The major contribution
of this paper is in the presentation and discussion of parallel WR algo-
rithms. Two algorithms have been investigated and their performance on a
Sequent Balance 8000 multi-processor have been given.

[CAR84] C. H. Carlin and A. Vachoux, "On Partitioning for Waveform
Relaxation Time-Domain Analysis of VLSI Circuits" Proc. 1984 Int. Symp.
on Circ. and Syst., Montreal, Canada, May 1984, ;;

[CHA75] B.R. Chawla, HK. Gummel, and P. Kozah, "MOTIS - an MOS :

timing simulator.” JEEE Trans. Circuits and Systems, Vol. 22, pp. 901-909, %
1975

[CHE84] C. F. Chen and P. Subramaniam. "The Second Generation MOTIS
Timing Simulator-- An Efficient and Accurate Approach for General MOS
Circuits” Proc. 1984 Int. Symp. on Circ. and Syst.. Montreal, Canada, May
1984.

[DEF84] P. Defebve. J. Beetem, W. Donath, HY. Hsieh. F. Odeh. A.E.
Ruehli, P.K. Wolff, S1., and J. White. "A Large-Scale Mosfet Circuit
Analyzer Based on Waveform Relaxation” Internationul Conference on
Computer Desiyn Rve, New York, October 1984.

[DEM80] G. De Micheli, A. Sangiovanni-Vincentelli and A.R. Newton, £
"New Algorithms for the Timing Analysis of Large Circuits” Proc. 1980
Int. Symp. on Circ. und Svst., Houston, 1980.

[DEUS&ST 1. 1. Deutsch "Algorithms and Architecture for Muliiprocessor-
Based Circuit Simulation”, Ph.D. Dissertation, University of California,
Berkeley. Electronics Research Laboratory, 1985

[GEA80} C. William Gear, "Automatic Multirate Methods for Ordinary
Differential Equations” Information Processing 80, North-Holland Pub. Co.,
1980

[HAL69] J. K. Hale, Ordinary Differential Egquations John Wiley and Sons
Inc., 1969 :
[LEL82a] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, " The
waveform relaxation method for time domain analysis of large scale
integrated circuits," IEEE Trans. on CAD of IC and Syst., Vol. 1, n. 3,
pp.131-145, July 1982.

1550

{LEL82b] E. Lelarasmee and A, Sangiovanni—\"incemelli "Relax: a new cir-
cuit simulator for large scale MOS integrated circuits”, Proc. 19th Design
Automation Conference Las Vegas, Nevada, pp. 682-690, June 1982,
[NAG7S] L.W. Nagel "SPICE2: A computer program to simulate semicon-
ductor circuits,” Electronics Research Laboratory Rep. No. ERL-MS20,
U niversity of California, Berkeley May 1975.
[NF“ 78] A. R. Newton, "The Simulation of Large Scale Integrated Cir-
cuits", Memorandum UCB/ERL M78/52, July 1978,
INEW83] AR, Newton and A, L. Sangiovanni-Vincentelli "Relaxation-
Based Circuit Simulation” JEEE Irans. on ED, Vol. ED-30. N. 9, pp. 1184-
1207. Sept. 1983 also STAM Jour. on Scientific and Stat. Computing. \'ol. 4.
N. 3, Sept. 1983 also JEEE Trans. on CAD of IC and Syst., July 1984,
[ORT70} J. M. Ortega and W.C Rheinbolt, Jterative Solution of Norlinear
Fquations in Several Variables Academic Press, 1970,
[SAK80] K. Sakallah and S.W. Director. "An activity-directed circuit simu-
lation algorithm," Proc. IEEE Ini. Conf. on Circ. and Computers, October
1980, pp.1032-1035
[SAL83] R. A. Saleh, J. E. Kleckner and A. R. Newton. "lterated Timing
Analysis and SPLICE1", JCCAD'&3 Digest. Santa Clara. CA.. 1983
{WHI83] J. White and A. L. Sangiovanni-Vincentelli, "RELAX2: A
\1od1ﬁed Waveform Relaxation Approach 10 the Simluation of MOS Digital
Cireuits” Conf. Proc. IEEE ISCAS, Vol. 2, pp756-759, Newport Beach, CA,
May, 1983.
[WHI84] J. White and A. Sangiovanni-Vincentelli, "Relax2.1 - A Waveform
Relaxation Based Circuit Simulation Program” Proc. 1984 Int. Custom
Integrated Circuits Conference Rochester, New York, June 1984.
[WHI85a] J. White, F. Odeh, A. Sangiovanni-Vincentelli, A. Ruehli,
"Waveform Relaxation - Theory and Practice” Trans. on Computer Simula-
tion, To appear.
[WHI8Sb] J. White and A.L. Sangiovanni-Vincentelli, "Partitioning Algo-
rithms and Parallel Implementations of Waveform Relaxation Algorithms
for Circuit Simulation” Proc. Int. Symp. on Circ. and Syst., Kyoto, Japan,
ne 1985

NOR
I vad vad
i
|
!

]
|
!
i
i
H

L 1

1561

o

.

