’ PARALLELIZING CIRCUIT SIMULATION - A COMBINED
ALGORITHMIC AND SPECIALIZED HARDWARE APPROACH

Jacob White

IBM T.J. Watson Research Center

Nicholas Weiner
Department of Electrical Engineering and Computer Science
University of California, Berkeley.

ABSTRACT

Accurate performance estimation of high-density integrated
circuits requires the kind of detailed numerical simulation per-
formed in programs like ASTAP[1] and SPICE{2]. Because of the
large computation time required for such programs when applied to
large circuits, accelerating numerical simulation is an important
problem. Parallel processing promises to be a viable approach to ac-
celerating the simulation of large circuits. This paper presents an
approach which exploits the parallelism in the simulation probiem
at two levels. A relaxation algorithm is used to break the circuit into
loosely coupled blocks which can be computed in parallel, and spe-
cial purpose hardware is used to exploit parallelism inside the block
computation.

1. INTRODUCTION

Reliable and accurate simulation tools play 2 key role in Inte-
grated Circuit (IC) design. This is because fabricating an integrated
circuit is expensive and often time-consuming (on the order of
months). In addition, minor errors in the integrated circuit design
can not usually be corrected after fabrication. Therefore, design er-
rors must be uncovered before fabrication, and this can be done
through the use of simulation.

There are a wide variety of techniques for simulating inte-
grated circuit designs, but none are as accurate, reliable, and tech-
nology independent as constructing the system of nonlinear ordinary
differential equations that describe a given circuit, and solving this
system with a numerical integration method. Specifically, implicit
numerical integration algorithms are used to convert the differential
equation system to a sequence of implicit nonlinear algebraic prob-
lems. The algebraic problems are solved using an iterative Newton
method, which converts each nonlinear algebraic problem into a se-
quence of linear problems. This approach has been implemented in
a variety of programs such as SPICE {1] and ASTAP[2].

The implicit integration methods are computationally expeti-
sive when applied to large systems because computing an implicit
solution implies solving for all the variables in a given system simul-
taneously. However, the density of integrated circuit design has
made large circuit simulation necessary. For this reason, several
modifications to the direct numerical method above have been de-
veloped that avoid large system solution without compromising
accuracy{3,4,5].

One of the techniques for numerically computing the solution
to a large circuit that avoids performing a simultaneous solution of
the entire system is the class of Waveform Relaxation
algorithms(6,7]. WR algorithms are based on "lifting" the Gauss-
Seidel and Gauss-Jacobi relaxation techniques for solving large alge-
braic systems to the problem of solving the large systems of ordinary
differential equations. Briefly, the idea of WR is to first break a
large circuit into 2 collection of subcircuits that are loosely intercou-

CH2348-1/86/0000/0438$01.00 © 1986 IEEE

438

pled. Then the behavior of each subvircuit, over some interval of
time, is calculated by “guessing” the behavior of the surrounding
subcircuits over the same interval of time. The responses for each
subcircuit are used to improve these guesses, and the response is re-
calculated. The procedure is iterated until the convergence is
achieved for each block over the interval of time.

Not only are relaxation methods more efficient than direct
methods for large problems, they are also promising techniques for
parallel processors. The computational method decomposes a large
circuit into a collection of small subcircuits, and these can be solved
in parallel. And since the task of performing a subcircuit solution is
a complicated computation, any parallel communication overhead is
likely to be an insignificant portion of the computation time.

Performing the subcircuit computations in parallel, which will
be referred to as block-level paralielism, has been the focus of most
previous work{11,12,13,15). However, it is only part of the
parallelism that can be exploited in these methods. There is sub-
stantial parallelism inside the block computation, but it is more dif-
ficult to exploit because the computation is harder to decompose
into independent pieces. In this paper, 2 two-level approach to
parallelizing circuit simulation will be presented. As an introduction
to exploiting block-level parallelism, previous work on & block par-
allel Waveform Relaxation (WR) algorithm is described. Then the
block computation is detailed, and a special purpose parallel
processor capable of exploiting the parallelism inside the block is
presented.

2. A BLOCK-PARALLEL WAVEFORM RELAXATION ALGO-
RITHM

The major difficulty in paralielizing the WR algorithm is that
MOS digital circuits are highly directional, and it is important to fol-
low that directionality when perf orming the relaxation computation,
or the WR method will become inefficient. For example, consider
applying WR to compute the transient response of a chain of
inverters. If the first inverter's output is computed first, and the re-
sult is used to compute the second inverter's output, which is then
used for the third inverter, etc., the resulting waveforms for this first
iteration of the WR algorithm will be very close to the correct sol-
ution. However, if the second and third inverter outputs are com-
puted in parallel with the first inverter’s output, the results will not
be close to the correct solution because no reasonable guess for the
second and third inverter inputs will be available.

It is possible to parallelize the WR algorithm while still pre-
serving a strict ordering of the computation of the subcircuit
waveforms (Gauss-Seidel) by pipelining the waveform computation,
In this approach, one processor would start computing the transient
response to subcircuit. Once a first timepoint was generated, a sec-
ond processor could begin computing the first timepoint for the sec-
ond subcircuit, while the first processor computed the second
timepoint for the first subcircuit. On the next step a third processor
could be introduced, to compute the first timepoint for the third
subcircuit, etc,

One might suspect that this timepoint pipelining algorithm in-
troduces too much scheduling overhead to be efficiently imple-
mented on a loosely coupled parallel processor. The algorithm was
implemented on a Sequent Balance 8000 system, a single-bus con-
nected multiprocessor and the following table of results indicate that
the algorithm is, in fact, effective[12].

TABLE 1 - TIMEPOINT PIPELINING WR
CPU TIME VS # OF PROCESSORS

Circuit FET's {1 3 6 9

uP Control | 116 704 247 159 149
Eprom 348 745 265 185 182
Cmos Ram | 428 3379 1217 642 496

3. INSIDE-BLOCK PARALLELISM

If a block relaxation method like WR is used, the problem of
computing the time domain solution of a large circuit is reduced to
computing the solutions to a sequence of smaller subcircuits. Com-
puting a subcircuit’s solution involves computing the solution to a
system of the form

a0, u(®)) = fO@, (1) WO) = v (11

where v(f) € IR" is the vector of node voltages, u(f) € IR” is the vec-
tor of input voltages (either input sources to the large circuit, or
node voltages from other subcircuits), g(v(1), 2(1)) € R” is the vector
of node charges, and f(v(r),u(f)) is the vector of net node currents,
Here, n, the size of the subcircuit, will depend on the algorithm used
to break the large circuit into subcircuits. Experience with the par-
titioning algorithms in RELAX2.3[11] indicate that an average n is
near 10, and can vary from 1 to 100.

The trapezoidal numerical integration algorithm is usually
used to solve the system of Eqn. 1. Given a timestep A, the
trapezoidal integration algorithm applied to Eqn. 1 yields:

qv(t + B)u + 1)) — gD ul)) - (2}

OSh(fOv(r + Bult + k) + fv@®), u®))) = 0
where v(f) is known, and the equation must be solved to compute
v(t + k). Equation 2 is solved with an iterative Newton-Raphson al-

gorithm. The general Newton-Raphson iteration equation to solve
F(x) = Ois
IetF) 6FF -5k = - ReR 3]

where F(x*) is referred to as the Newton residue and Jp is the
jacobian matrix of F with respect to x. If the Newton algorithm is
used to solve Egn. 2 for v(r + &), the residue, FOA(t + k), is:

FO*e+ 1) = q0F @+ Wat +) — g0 @) - 141
0SH(S5t + Wt + 1)) + £, ())
and the Jacobian of F(* (¢ + h)), J (4@ + B)) is:

Te0R(+ B) = 51

Xt + h), A
oMo+ Mt +) + osp LY ¢t ai e+ b))

Then v*+(t + h} is derived from (¢ + k) by solving the linear sys-
tem of equations

TR+ e+ B — e+ m)] = — FORG + B)). 6]

The Newton iteration is continued until sufficient convergence is
achieved, that is |v**1(t + h) — (r + A)| < e and FO*(t +) is

close enough to zero.

439

The computation performed to calculate v(r + h) from v(r) is
summarized in the following algorithm.

Algorithm 1 - (Computation of one timestep)

Pick a timestep &
Calculate the input vector u(r + &)
Calculate an initial guess for the Newton algorithm
vt + B).
repeat §
for each (element in the subcircuit)i
Compute the currents and the charges, and their de-
rivatives.
Sum the currents and charges into the Newton resi-
due vector.
Sum the derivatives into the Jacobian Matrix.

}
Decompose the Jacobian Matrix.
Solve for the node voltage update.
Check convergence

} until (converged)

Calculate the integration error

There are many portions of the computation that can be
parallelized[10,16]. Calculating the inputs, generating an intial
guess, checking on the Newton convergence, and calculating the in-
tegration error are all normal vector operations and each element of
the vector can be computed in parallel. However, the vector length
will be short, because the subcircuit size will be near 10. The
Jacobian decomposition and matrix solve can also be parallelized,
but again the vectors will be short. The major portion of the com-
putation, the device current, charge and derivative calculation, can
be parallelized by computing all the devices in parallel. This calcu-
lation can be vectorized, but it is not possible to achieve peak effi-
ciency because the calculations are data dependent|8]. Also, there
will be memory contention when the devices add their contribution
to the residue and the Jacobian. Since several devices can contribute
to the same element of the residue vector or Jacobian entry, the
summation must somehow be serialized. ’

4. SPECIAL HARDWARE TO EXPLOIT INSIDE-BLOCK
PARALLELISM

As described above, there is substantial exploitable parallelism
in the inside-block computation. However, inside-block parallelism
is harder to exploit than the block parallelism because the computa-
tions that are performed in parallel involve many fewer operations.
Interprocessor synchronization and communication will be per-
formed much more frequently, and therefore must be very efficient,
or any advantage provided by the parallelism will be lost.

The problem of designing a general-purpose parallel processor
which allows for efficient synchronization and communication is
extremely difficult. It is much easier to design a specialized system

that wiil efficiently perform the parallel tasks involved in circuit
simulation. In fact, considerably higher performance can be
achieved by using a specialized design in which both the intercon-
nection of processors and the design of the processors themselves are
tuned to the circuit simulation task. This is the approach that has
been adopted.

Consider the detailed profile of a 113-node memory buffer
circuit simulated by the Relax2.3[11] program using the Yang-
Chatterjee MOS model[18] (Table 2). As the table indicates, more
than 98% of the time spent in the circuit sirulation program is spent
in the portion of the program represented by Algorithm 1. Since the
rest of the computer time is spent performing input and output
processing, the approach taken to simulation acceleration is to con-
struct a specialized co-processor for an existing general purpose host
computer. The general purpose computer then performs all the in-
put and output, and the instruction set of the co-processor is limited
to only those instructions needed to perform the steps in Algorithm
1.

TABLE 2 - CPU USAGE IN A SAMPLE SIMULATION
Input/Qutput 1.98s
Timestep selection 0.01s
Element evaluation, Jacobian and Residue load 428s
Matrix Decomposition 5.66s
Matrix Solve and Node Voltage update 5.63s
Testing Newton Convergence 1.43s
Local Truncation Error Calculation 0.86s

4.1 - Basic Coprocessor Architecture

The are several ways the co-processor design is tuned to per-
forming the steps in Algorithm 1. Since almost all the operations are
performed on double precision floating point numbers, the data path
to memory is very wide (128 bits). As pointed out above, since the
size of typical subcircuits will be about 10 nodes, the co-processor is
set up as an five-way parallel processor, so that each of the process-
ors will be used efficiently. And because the WR algorithm reduces
large problems to computing a sequence of small problems, the
memory space of the processor is limited (512k bytes). The small
memory requirement makes it possible to make the entire memory
very fast. This is a tremendous advantage because it eliminates the
need for a cache. In addition, since computing each Newton iter-
ation involves touching every datum in the problem, a fast memory
is the only way to insure rapid execution[17].

The co-processor is constructed from a five-stage pipelined
processor. Using a deeply pipelined processor as a single serial ma-
chine does not generally provide peak performance. This is because
in most programs, branches and interinstruction data dependencies
frequently disrupt the pipeline. To avoid this, the pipeline processor
is designed so that each stage of the pipeline executes an independent
instruction stream, so the co-processor can be treated as a five-way
parallel processor with a single shared memory[14]. In a sense, the
intractable problem of eliminating interinstruction data dependen-
cies and branches has been transformed to the standard parailel
synchronization problem. Note that it would be simpler to design
the unit as a vector processor, but the bulk of the computation, ele-
ment current and charge evaluation, can not be efficiently
vectorized.

The entire 512k byte co-processor memory is shared not only
by the five sub-processors, but also by the host computer, allowing
for easy access to results and eliminating the need to copy data, The
host and the co-processor take turns performing operations on a
single copy of the data in shared memory.

4.2 - Specialized Instruction Set.

Most of the operations performed in Algorithm 1 are double
precision (64 bit) floating point operations. For this reason the co-
processor instruction set includes mostly floating point instructions.
The co-processor cycle time is set by the floating point instruction
time, so that a floating point instruction executes in one cycle.

The path to memory is 128 bits wide to allow each double
precesion number to be associated with a 32 bit pointer and a 32 bit
integer. Since all three are read each time a double precision oper-
and is used, simultaneous operations can performed on the three
fields. This allows the co-processor to step through a linked list in a
single instruction loop, which is useful for performing operations on
vectors and sparse matrices[19).

Most analytic transistor models use complex functions like
logarithm, exponential and square root. Standard algorithms for
computing these functions can be accelerated through the use of ta-
bles. For this reason, the co-processor includes a special table-
lookup facility. It is possible to use the facility for both standard
mathematical function evaluation as well as user-defined functions.

In order to efficiently deal with the problem of synchroniza-
tion, the processor also has a double precision serial add function.
Using the serial add function, each of the five processors can safely

440

add quantites to identical locations in memory, and the result will
be the same as if the processors performed the additions in some
strict order. This is particularly useful when forming the residue and
the Jacobian (see above).

4.3 - Task Distribution Mechanism

The pipelined co-processor is viewed as five parallel sub-
processors. Each has its own program counter, and operates in the
usual fashion, executing the instruction indicated by its program
counter and incrementing the program counter. Program flow is
controlled by the use of branch instructions.

A mechanism, involving very little host processor - co-
processor communication, for distributing tasks amongst the sub-
processors has been devised. The mechanism involves the use of a
"higher level" sequence of instructions, or "task queue", within co-
processor instruction memory, and of an extra program counter to
keep track of progress through this sequence. Bach of the in-
structions in the sequence is a branch to a routine to perform one of
the processing tasks. Every time a sub-processor completes a task it
picks up the next instruction from the higher level sequence, and
commences execution of the next processing task. This procedure is
continued until all of the processing tasks have been completed.

5. CONCLUSIONS AND AKNOWLEDGEMENTS

The cycle time of the co-processor hardware is 0.24 microsec-
onds, and since floating point operations take one cycle, the co-
processor’s peak rate is 4.17 megaflops. Several of the routines in the
RELAX2.3{11] program that are used in Algorithm 1 have been
translated into the co-processor’s assembly language. Examination
of generated assembly code indicates that the co-processor will
achieve between 2 and 4 megaflops for most of the computations in-
volved in Algorithm 1. 1t is difficult to project the final system per-
formance, because it will depend crutially on the interaction
between the host and co-processor. A detailed register-transfer level
simulation study is in progress, and results will be presented at the
conference,

The authors would like to acknowledge the architecture sug-
gestions of Jack Kohn and Monty Denneau, and the many valuable
discussions with Giovanni DeMicheli, Dan Ostapko, and Albert
Ruehli.

REFERENCES

{1] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H.
Qassemzadeh and T. R. Scott, "Algorithms for ASTAP -- A Net-
work Analysis Program," IEEE Trans. on Circuit Theory, Vol. CT-20,
pp. 628-634, Nov. 1973

[2] L.W. Nagel, "SPICE2: A computer program to simulate serni-
conductor circuits,” Electronics Research Laboratory Rep. No.
ERL-M520, University of California, Berkeley, May 1975,

[3] BR. Chawla, HK. Gummel, and P, Kozah, "MOTIS - an MOS
Timing Simulator," IEEE Trans. Circuits and Systems, Vol. 22, pp.
901-909, 1975

[4] K. Sakallah and S.W. Director, "An Activity-Directed Circuit
Simulation Algorithm," Proc. IEEE Int. Conf. on Circ. and Computers,
October 1980, pp.1032-1035

[S] R. A. Saleh, J. E. Kleckner and A. R. Newton, "Iterated Timing
Analysis and SPLICE1", JCCAD’83 Digest, Santa Clara, CA., 1983.

[6] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, "The
Waveform Relaxation Method for Time Domain Analysis of Large
Scale Integrated Circuits,” IEEE Trans. on CAD of IC and Syst., Vol.
1,n. 3, pp.131-145, July 1982,

[7] P. Defebve, J. Beetem, W. Donath, H.Y. Hsieh, F. Odeh, A.E.
Ruehli, P.K. Wolff, Sr., and J. White, "A Large-Scale Mosfet Circuit
Analyzer Based on Waveform Relaxation" International Conference
on Computer Design, Rye, New York, October 1984,

[8] A. Vladimirescu and D. O. Pederson, "A Computer Program for
the Simulation of Large Scale Integrated Circuits," IEEE Proc. Int.
Symp. on Circuits and Systems, Chicago, 1981.

[9] J. T. Deutsch "Algorithms and Architecture for Multiprocessor-
Based Circuit Simulation”, PAD. Dissertation, University of
California, Berkeley, Electronics Research Laboratory, 1985

[10] R. Ginosar and N. G. Jacobson "The Simulation Machine: A
VLSI Architecture for Circuit Simulation” Proc. Int. Conf. on Comp.
Design, Port Chester, New York, October 1985

[11] J. White and A.L. Sangiovanni-Vincentell, "Partitioning Algo-
rithms and Parallel Implementations of Waveform Relaxation Algo-
rithms for Circuit Simulation" Proc. Inr. Symp. on Circ. and Syst.,
Kyoto, Japan, June 1985

[12] J. White, R. Saleh, A. Sangiovanni-Vincentelli, and A. R.
Newton, "Accelerating Relaxation Algorithms for Circuit Simu-
lation using Waveform Newton, Iterative Step Size Refinement, and
Parallel Techniques” Int. Conf. on Computer-dided Design, Santa
Clara, California, November 1985,

[13] H. Uno et al., "A Parallel Implementation of MOS Digital Cir-
cuit Simulation", Int. Conf. on Computer-Aided Design, Santa Clara,
California, November 1985.

[14] R. 5. Gyurcsik and D. O. Pederson, "A MOS Transistor Model-
Evaluation Attached Processor for Circuit Simulation”, Proc, of the
Int. Conf. on Computer-Aided Design, Santa Clara, California, No-
vember 1985.

[15] An Empirical Analysis of the Performance of a Multiprocessor-
Based Circuit Simulator. G.K. Jacob, A.R. Newton, D. O. Pederson
Proc. of the Design Automation Conference, Las Vegas, Nevada, June
1986.

[16] C. L. Seitz, "The Cosmic-Cube", Comm. of the ACM, Jan. 1985,
pp. 22-33.

[171 D. Webber, Private Communications, June, 1985

[18] P. Yang, B.D. Epler, P. X. Chatterjee, " An Investigation of the
charge conservation problem for MOSFET circuit simulation,"
IEEE Journal of Solid-State Circuits, Vol. SC-18, No. 1, pp. 128-138,
Feb. 1983

[19] K. S. Kundert, "Sparse Matrix Techniques”, A. E. Ruehli (edi-
tor), Circuit Analysis, Simulation and Design. Vol. 1., North-Holland,
to be published in 1986.

441

