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Abstract

Performing detailed simulation of clocked analog circuits
(e.g. switched capacitor filters and switching power supplies)
with circuit simulation programs like SPICE is computation-
ally very expensive. In this paper we present a new, more effi-
cient, method for computing the detailed steady-state solution
of clocked analog circuits. The method exploits the property of
such circuits that the waveforms in each clock cycle are similar
but not exact duplicates of the proceeding or following cycles.
Therefore, by computing accurately a few selected cycles, the
entire steady-state solution can be constructed efficiently.

1 Introduction

In general, analog circuit designers rely heavily on circuit simulation
programs like SPICE [nagel75] or ASTAP [weeks73] to insure the cor-
rectness and the performance of their designs. These programs sim-
vlate a circuit by first constructing a system of differential equations
that describes the circuit, and then solving the system numerically
with a time discretization method such as backward-Euler. When ap-
plied to simulating clocked analog circuits, like the switched-capacitor
filters used in integrated circuits or the switching converters used in
high power applications, the classical circuit simulation algorithms be-
come extraordinarily computationally expensive. This is because the
period of the clock is usually orders of magnitude smaller than the
time interval of interest to a designer. The nature of the calculations
used in a circuit simulator implies that an accurate solution must be
computed for every cycle of the clock in the interval of interest, and
this can involve thousands of cycles.

In this paper we present another approach to the simulation of
clocked analog circuits for the particular case of computing the steady-
state solution. The method exploits the property of these circuits that
node voltage waveforms over a given high frequency clock cycle are
similar, but not exact duplicates, of the node voltages waveforms in
proceeding or following cycles. This suggests that it is possible to
comstruct a solution accurate over many high frequency clock cycles
by calculating the solution accurately for a few selected cycles.

We begin, in the next section, by describing our assumptions about
clocked analog circuits in steady-state and presenting a mixed frequen-
cy-time method. In section three we will discuss some of the computa-
tions involved in this method. In section four we examine the applica-
tion of the frequency-time method to simulating switched-capacitor fil-
ters and present comparison results. Finally, in section five, we present
our conclusions and acknowledgements.

2 The Mixed Frequency-Time Method

Very little can be assumed about behavior of the node voltage wave-
forms in a clocked analog circuit over a given clock cycle, because the
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circuits involved are very nonlinear and are usually switching rapidly.
However, the node voltage waveforms over a whole clock cycle usually
vary slowly from one cycle to the next, as controlled by the input sig-
nal. This implies that if the input is periodic, and the clocked analog
circuit is in steady-state, then the sequence formed by sampling the
node voltages at the beginning of each clock cycle is periodic (Fig.
1). We derive our method by assuming this to be true, and further as-
suming that the periodic function that describes the sequence of initial
points in each clock cycle can be accurately represented as a truncated
Fourier series using few terms.

If the sequence of initial points of each clock cycle can be described
by a Fourier series with J terms, then once J initial points are known,
all the initial points are known. This implies that given our Fourier
assumption, to compute the steady state behavior of a ciocked analog
circuit we need only find the initial points of J clock cycles.

In the next two subsections we describe two relationships that can
be exploited to construct a nonlinear algebraic system of J equations
in J initial points (solving this system is discussed in section 3). The
first relation, described in section 2.1, is derived from the Fourier se-
ries assumption, and is a linear relationship between the initial points
of an evenly distributed set of J cycles and the initial points of the

Figure 1: The response of a clocked analog circuit and the periodic
function of the initial points. The J cycles used in the calculation are
emphasized.

corresponding J cycles that immediately follow. The second relation
is derived from solving the differential equation system that describes
the analog circuit, for the time interval of one clock cycle, J times,
each time using one of the distributed set of J initial points as an
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initial condition. This results in another set of values for the initial
points of the following J cycles. Insisting that this set match the set
resulting from the Fourier relation yields a nonlinear algebraic system
in J unknowns, which can be solved for the J initial points, and this
is described in section 2.2.

2.1 The Delay Operator

Consider the sequence of initial points of each clock cycle at some
circuit node n, and denote the sequence by v,(m1), vn(72),..., vs(7g)
where S is the number of clock cycles in an input period. It is assumed
that this sequence can be accurately approximated by a truncated
Fourier series, and therefore

K
Vo+ Z(ch cos kwry + V¥ sinkwr,) = va(7), (1)
k=1

where w is the fundamental frequency of the input signal, K is the
number of harmonics and J = 2K + 1 is the number of unknown
coefficients. Given (1), there is a linear relation between any collection
of J initial points and any other collection of J initial points. However,
as mentioned above, we are most interested in the linear operator that
maps a collection v(ry,),...,v(r,,) into v(ry, + T),...,v(r,, + T)
where T is the clock period and {m,...,7s} is a subset of {1,...,5}.
This linear operator will be referred to as the delay matrix.

Deriving the delay matrix is a two stage process. First, the J

points, v(7y, ), ..., v(7,,) are used to calculate the Fourier coefficients.
Then the Fourier series (using these coefficients) is evaluated at the J
times, 7, +T),...,7,,+T. The Fourier coefficients are then eliminated

to yield the desired direct relation. To compute the Fourier coefficients,
write (1) as a system of J linear equation in J unknowns [kundert88al,

Vo
Vlgi vn(fﬂl)
sz U"(Tfla)
i R vn(T’la) (2)
VE ;
Vlé vn{Tn,)

where I'"! € R7%7 ig given by

1 coswry, sinwmy,
1 coswmy, sinwry,
1 coswry, sinwmy,

cos Kwr,, sinKwry,
cos Kwry, sinKwmy,
cos Kwry, sinKwry, | (3)

1 coswrmy, sinwr, cos Kwry, sinKwry,

The matrix I'"! maps the Fourier coefficients to a sequence and
is referred to as the inverse discrete Fourier transform. If the times
Tms .-, Ty, are reasonably evenly distributed over one period of the
input signal, then I'"! is invertible. Its inverse, the forward discrete
Fourier transform, is denoted by I'. We can also write

Vo
Vgi Va(Ty, + 1)
VIS V(7o + 1)
@ | L = | et D C)
vE :
VE Un(Tg, +T)

where T=Y(T) € %7 is given by

1 cosw(my, +T) sinw(m, +T)
cosw(Ty, +T) sinw(my, +T)
cosw(ty, +T) sinw(m, +7T)

sin Kw(ry, + T)
sin Kw(7y, + T)
sin Kw(my, + T)

[N

1 cosw(ry, +T) sinw(ry, +7T) sin Kw(ry, + T)

©)

Given a sequence, a delayed version is computed by applying I to the
sequence to compute the Fourier coefficients, and then multipling the
vector of coefficients by T=1(7).

vn(rfh + T) Uﬂ(Tm)
”n(ﬂn: +7) - I"‘I(T)I‘ v"(:’ﬂz) ) )
”n(Tn; +7T) vn(Ty,)

Thus, the delay matrix, D(T) € RI* | is defined as
D(T) = L-}(T)L. )

As the delay matrix is a function only of w, K, {y;,..., 7y, } and T,
it can be computed once and used for every node.

2.2 The Differential Equation Relation

We assume that any clocked analog circuit to be simulated can be
described by a system of differential equations of the form

%Q(U(t): (1)) + iv(t), u(®)) = 0, 8

where v() € RY is the vector of node voltages, u(t) € R is the vector
of input sources, ¢(v(t),u(t)) € RY is the vector of sums of charges
entering each node, and i(v(t),u(?)) € RY is the vector of sums of

currents entering each node. If the node voltages are known at some
time #g, it is possible to solve (8) and compute the node voltages at
some later time ¢;. In general, one can write

v(t1) = $(v(to), 20, 1) 9)

where ¢ is referred to as the state transition function for the differential
equation and can be expanded as

#1(v(to), o, 1)
&(v(to), to, 1) = : (10)
on{v(to), ta, t1)

where ¢, : RVXIXL L R foralln € {1,...,N}.
Now reconsider the J initial points at some circuit node n, v,(7,),
-.yn{7y,). Foreach j € {1,...,J} and each n € {1,...,N} we can

write
vn(ry; +T) = ¢ﬂ("(rn,‘)v Toys Ta; + 1) (11}

where T is the clock period. Note that vn(r,, + T) is the initial point
of the cycle immediately following the cycle beginning at Ty, Also,
the node voltages at 7, can be related to the node voltages at 7, + T
by the delay matrix, D(T). That is,

n(Th,) va(Ty, +T)
| = | (12)
vn(Ty,) vn(ry, +7T)
It is possible to use (11) to eliminate the va(7,; + T) terms from (12),
which yields
'U,,(Tm) ¢n(v(rﬂx)’ T'h ’ T'h + T)
Vn(Ty,) Snlv(Ta,) Tnss Ty + 1)
foreachn € {1,...,N}.

(13)

3 Solution by Newton-Raphson

The collection of equations given in (13) can be reorganized into a
system of NJ equations in NJ unknowns as
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[ o) ] [ u(o(T)s T ™ +T) ]
v(Tfh) VN(T'Ix) ¢N(U(Tn1): T T+ T)
F = DN(T) : -
v(7y,) v1(7y,) 61(v(,), Ty Ty + 1)
L onv(mn,) 1 L on(w(mns ) moss ey + T) |
(14)
and
v(T'h)
F : =0, (15)
v(ty,)
where F : ®¥7 — ®¥7 | and Dy € RV7*N7 s given by
[ diidn ... disIn
D)= | : (16)
I_dJIIN v dygIy

where d;; € R is the ¢ j** element of the delay matrix D(T), and
In € RY is the identity matrix.
Applying Newton’s method to (14) leads to the iteration equation

v(l)(rﬂx) v(l+1)(Tﬂz) - U(I)(Tfh) v (T’h)

Jr : =-F

W(ry,) ) | o#9(r,,) = ¥0(ry,) ()

where [ is the iteration number and Jr € RV/*NJ is the Frechet
derivative of F' given by

Dn(T)—diag (a¢("(7nx)v Ty Ty + T) . O¢(v(Tn;) oy Ty + T)) )

dv(ty,) T Ov(ty;) (18)

There are two important pieces to the computation of one Newton
iteration. Factoring the matrix Jp, which is sparse, and evaluating
Jr and F, which involves computing the state transition function,
$(v(ry,), Tn;» To; + T), and its derivative for each j€{1,...,7}. The
state transition functions can be evaluated by numerically Integrating
(8) over the J periods. The derivatives of the state transition functions,
referred to as the sensitivity matrices, can be computed with a small
amount of additional work during the numerical integration.

To show how the computation of the state transition function and
its derivative fit together, consider numerically integrating (8) with
backward-Euler, which we chose for simplicity and because it appears
to be one of the best formulas for clocked analog circuits. Given some
initial time o and some initia] condition, v(to), applying backward-
Euler to (8) results in the following algebraic equation,

fw(to+h), (ko)) = %(q(v(to +h)) = g(v(to))) +i(v(to+h)) = 0 (19)

where b € R is the timestep. Note we have dropped explicitly denoting
the dependence of ¢ and ¢ on the input u for simplicity.

Equation (19) is usually solved with Newton-Raphson, for which
the iteration equation is

IO to W)™ Oaa + 1) = o to 1) = = Olta + ), (te)

20)
where J;(v(t)) € RV*Y is the Frechet derivative of the nonlinear
equation in (19) and is given by

_0f(v(t),) _ 18g(x(t)) , Bilv(t)) 1

OO e il S ey i) R

Solving (19) yields an approximation to v(to+k) = é(v(t0), to, to +
). Implicitly differentiating (19) for v(to + h) with respect to v(to)

yields
du(to + h) _ 1 8a(v(to)) 8v(te)
ou(te)  h Ou(te) du(to)

T (v{to + h)) (22)

Given a v(to), (19) can be repeatedly applied to find v(to + T) =
#(v(to), to, to + T), and (22) can be repeatedly applied to find the sen-
sitivity matrix dv(to + T)/0v(to) = 0é(v(to), to,to + T')/Bu(to) [kun-
dert88b]. Note that J; is required in both (20) and (22), and thus the
sensitivity matrix update can be made more efficient by factoring Jy
once and using it for both computations. However, the sensitivity ma-
trix is still expensive to compute, because it is an N x N full matrix.
We return to this point at the end of section 4.

4 Switched-Capacitor Filter Simulation

It has been possible for several years to fabricate complex analog cir-
cuits like switched-capacitor (SC) filters on a single integrated circuit.
As with any integrated circuit design, since the cost of fabrication is
very high, it is desirable to first simulate extensively the design. De-
tailed simulation of such circuits with SPICE is too computationally
expensive, and therefore other, faster but less accurate, approaches are
used. However, the mixed frequency-time approach described above
can perform fast and accurate detailed simulation of SC filters, and is
particularly efficient on this class of circuit for several reasons. First,
SC filters are usually followed by a sampler, and so only the initial
point of each cycle is needed. Second, the circuits are designed so that
the distortion present in the sequence of initial points is small, so if
driven by a sinusoid, only a few harmonics are significant and only a
few clock cycles need to be computed. Finally, the state transition
function for an SC filter over a clock cycle is near linear, and therefore
the Newton method in (17) converges in just a few iterations.

In this section we describe our program Nitswit, a detailed simula-
tor for SC filters. We start in the next section by describing previous
work in SC filter simulation, and then in Section 4.2 we present our
results.

4.1 Comparison to Previous Work

The most common approach to simulating an SC filter is first to break
the circuit up into functional blocks such as operational amplifiers and
switches. Each functional bock is simulated, using a traditional circuit
simulator, for some short period. The simulations of the functional
blocks are used to construct extremely simple macromodels, which
replace the functional blocks in the circuit. The result is a much
simplified circuit that can be simulated easily. This simplified circuit is
then simulated for the thousands of clocks cycles necessary to construct
a solution meaningful enough to verify the design.

Ad hoc simulators of this macromodeling sort have commonly been
written by frustrated analog designers, but the techniques have also
been formalized in programs like Diana [deman80] and Switcap [tsi-
vidis79]. Although these programs have served designers well, a macro-
modeling approach is only as good as the macromodel. I a second or-
der effect in a functional block changes overall performance, but this
effect is not included in the macromodel, the effect will never be seen
in the simulation.

The simulators traditionally intended for use with SC filters, such
as Diana and Swiicap, also make the “slow-clock” approximation. Af-
ter each clock transition, every node in the circuit is assumed to reach
its equilibrium point before another transition occurs. This assump-
tion, along with the use of algebraic macromodels, allow the filter to
be treated as a discrete-time system with one time point per clock
transition. A set of difference equations is then used to describe the
filter.

The slow-clock approach suffers from several serious drawbacks.
First, SC filters are being pushed to operate at ever higher frequen-
cies, and the assumption that signals reach equilibrium between clock
transitions is often violated. Also, since signals between clock transi-
tions are not computed, it is possible to miss events that occur in these
intervals that might interfere with proper and reliable operation (e.g.,
clock feed-through spikes causing an operational amplifier to saturate).
Lastly, it is not possible to capture the effects of dynamic distortion
processes, such as the important effect of the channel conductance on
charge redistribution when a transistor switch turns off.
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The mixed frequency-time approach can accelerate the detailed
simulation of SC filters without resorting to macromodeling or the
slow-clock assumption. Thus, it does not suffer from the limitations
detailed above. It also does not require a large investment in macro-
modeling and is suitable for use with automated circuit extractors.
Since our approach finds the steady-state solution directly and per-
forms a circuit-level simulation, it is capable of accurately predicting
distortion performance. Though not specifically described in this pa-
per, this mixed frequency-time approach can also be used when the in-
put consists of the sum of two periodic signals at unrelated frequencies.
Thus, the intermodulation distortion can be directly computed, which
is particularly useful for bandpass filters. Also, the fact that steady-
state is computed directly, implies an additional advantage over tran-
sient methods when high-Q filters are simulated. One final point, the
mixed frequency-time method can also be adapted to the macromod-
eling approach used in other SC filter simulators, accelerating those
methods as well when the steady-state solution is desired.

4.2 Results

Nitswit is a C program that uses the algorithms presented in this
paper to simulate SC filters. It contains two algorithms capable of
finding the steady-state response of a circuit. The first is simply a
transient analysis that continues until any steady-state is achieved.
The second, of course, is the mixed frequency-time algorithm. Coding
both algorithms into the same simulator provides a fair evaluation of
the mixed frequency-time approach.

Results for three circuits are given below. The first, sclpf, is an RC
one-pole SC filter. The second, scop, is a one pole active CMOS low
pass filter. The last, frog, is a five pole Chebyshev active CMOS leap
frog filter with 0.1dB ripple. This circuit is driven with a IMHz clock,
has a 20kHz bandwidth, and is being driven with a 1kHz test signal
to measure its distortion.

circuit direct mixed frequency-time
name nodes cycles/ | time | harmonics, Newton time
period | (sec) cycles iterations (sec)
sclpf 2 33 24.5 3,7 3 4.3
scop 13 100 522 3,7 6 90
frog 77 1000 | 12,987 3,7 6 1228

Table 1. Nitswit results from a VAX 8650 running ULTRIX 2.0.

Examination of the results above indicate as much as an order of
magnitude speed increase over traditional methods, but this is .not 2s
much as one would expect. Much of the CPU time for large circuits
is spent calculating the dense sensitivity matrix and factoring the J.a—
cobian in (18). It does turn out however, that almost all the entries
of the sensitivity matrix are approximately zero, and this suggests sig-
nificant speed improvements can be achieved by ignoring those terms.
In addition, we expect to get improved performance by switching to
relaxation techniques to solve (14). Preliminary experiments indicate
the relaxation converges quickly and reliably, and is much faster than
sparse LU factorization.

5 Conclusion

A new mixed frequency and time method for computing the steady-
state solution of clocked analog circuits has been presented. The
method works by computing the solution to the differential equatio;l
system associated with a circuit for only J clock cycles, where J is
the number coefficients needed in the Fourier series to represent ac-
curately the sequence of initial points in each clock cycle. Thu§, this
method is particularly efficient when the number of coefficients in the
Fourier series is many fewer than the number of clock cycles in one
input signal period.

We have shown the mixed frequency-time algorithm to be an effi-
cient method for the detailed simulation of switched-capacitor filters.
It also appears promising for use on other traditionally hard to sim-
ulate circuits like switching power supplies and phase-locked loops.

Another important aspect of this algorithm is that, upon examination
of (14), it is clear that the J integrations of the differential equation
to compute the J ¢’s and their derivatives are independent. The other
step, solving the sparse matrix problem in (17), seems, as mentioned
above, to be very amenable to solution by relaxation. Therefore, the
mixed frequency-time algorithm is extremely well suited to implemen-
tation on a parallel processor.
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