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Abstract

In this paper we investigate the possibility of accelerating
the transient simulation of MOS devices by using waveform re-
laxation. Standard spatial discretization techniques are used to
generate a large, sparsely-connected system of algebraic and or-
dinary differential equations in time. The waveform relaxation
(WR) algorithm for solving such a system is described, and sev-
eral theoretical results that characterize the convergence of WR
for device simulation are given. In addition, one-dimensional
experimental results are presented.

1 Introduction

Both digital and analog MOS circuit designers rely heavily on cir-
cuit simulation programs like SPICE [3] to insure the correctness and
to test the performance of their designs. For most applications, the
lumped MOS models used in these programs [9] accurately reflect the
behavior of terminal currents and charges, bul in some cases, these
models are not adequate. In particular, charge redistribution between
source and drain during device switching cannot easily be modeled
by a lumped device, but the details of this charge redistribution can
have an important effect on circuit behavior. In circuits like dynamic
memory cells, sense amplifiers, analog-to-digital converters, and high
frequency operational amplifiers, charge redistribution effects may not
only degrade performance, but can inhibit proper function.

For these critical applications, sufficiently accurate transient sim-
ulations can be performed if, instead of using a lumped model for
each transistor, the transistor terminal currents and charges are com-
puted by numerically solving the drift-diffusion based partial differ-
ential equation approximation for electron transport in the device.
However, simulating even a few transistor circuit in this way is very
computationally expensive, because the accurate solution of the trans-
port transport equations an MOS device requires a two dimensional
mesh with more than a thousand points.

In this paper we investigate the possibility of accelerating the tran-
sient simulation of MOS devices by using waveform relaxation. In the
next section we start by introducing the equations for transient device
simulation. Then we view the result of applying commonly used spa-
tial discretization techniques to these equations, generating a large,
sparsely-connected system consisting of algebraic and ordinary differ-
ential equations in time. In Section 3 we present the waveform re-
laxation algorithm for solving such a system, and suggest why it may
be particularly efficient. Several theoretical results that characterize
the convergence of the method are presented in Section 4, and one-
dimensional experimental results are described in section 5. Finally,
conclusions and acknowledgements are given in section 6.
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2 Classical Simulation Equations

The terminal behavior of an MOS device is well described by the Pois-
son equation and the electron current-continuity equation [5]

Vi +q(N—n)=0 (1)

- on

V. J,, —_ qB_t = (2)
In these equations ¢ is the electrostatic potential, ¢ is the magnitude of
electronic charge, n is the electron concentration, and .7,. is the electron
current density. N is the net doping concentration given by N =
Np—N4 where Np and N4 are the donor and acceptor concentrations.
The electron current density is commonly approximated by the

drift-diffusion equation:

Ja=~¢(jta n V) - D, Vn) (3)

where jt, is the electron mobility, and D, is the diffusion coeflicient.
An equation system with only n and ¢ as unknowns is derived by
using (3) to eliminate J, from (2).

There are a variety of ways to spatially discretize the system of
two equations in the two unknowns n and ¥. Given a rectangular two
dimensional mesh, a common approach is to use a finite-difference for-
mula for the Poisson equation, and an exponentially-fit finite-difference
formula for the current-continuity equation. For notational simplicity,
we will assume that the mesh points are evenly spaced a distance {
apart, so that the discretized Poisson equation at each mesh point i
is:

CZ(’/’j—1/);)+q12(N,-—n,~)=0 (4
j

where n;,v;, and N; are the electron concentration, the potential, and
the net doping concentration at mesh point ¢. The summation is taken
over the nodes j surrounding i (four nodes for a mesh node i not on
the boundary, i.e. north, south, east, and west).

Under the same assumptions, and assuming constant mobility, the
discretized current-continuity equation with the drift-diffusion approx-
imation becomes:

qD, Z [B(uj — wi)nj — B(ui — uj)n;] — qi* (%m) =0 (5)

2

where u; = ¢tp;/KT and B(zx) = z/(expz — 1) is the Bernoulli func-
tion used to exponentially fit the potential variation to the electron
concentration variation. In this equation, the Einstein relation D, =
(KT/q)pn has been used to eliminate p,.

If there are m mesh points, then the result of applying the spatial
discretization to (1),(2), and (3) is a sparse system of m algebraic
constraints, represented by (4), and a sparsely connected system of m
ordinary differential equations, represented by (5).
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3 The Waveform Relaxation Process

The standard approach used to solve these two systems is to discretize
the £n;(t) term in (5) with a low order integration method such as
backward-Euler [1]. The resultis a sequence of algebraic systems in 2m
unknowns, each of which can be solved with some variant of Newton’s
method and/or relaxation. Another approach is to apply relaxation
directly to the differential equation systemn. This leads to a time wave-
form relaxation process, as given by the following algorithm.

Although only the Gauss-Jacobi algorithm is presented for the sake
of notational simplicity, a Gauss-Seidel version could be created by
adjusting the iteration indexes.

Algorithm 1 WR Gauss-Jacobi Algorithm for solving the system
produced by equations (4) and (5).
The superscript k denotes the iteration count, the subscript
i denotes the component index of a vector, and €y and ¢,
are small positive numbers.

ke—20
repeat {
ke—k+1
foreach(i € {1,...,n}) {
solve

e (7 =) g (Ne=nf™1) = 0

k-1 _

eD. Y [I‘B(u;f‘1 - uf‘l)nj

~ql* (fnf) =0
for(yf (1), nf(1); ¢ € [0, T, nk(0) = nyo)

} until(ljy* — v*-1)| < ¢y and [Inf —nF~1|| < ¢,)

The WR algorithm reduces the problem of simultaneously solving
m differential equations and m algebraic equations to one of itera-
tively solving 2m independent equations. Each of the m differential
equations for the n;(¢) waveforms can be solved with a numerical in-
tegration method such as backward-Euler. Since they only contribute
algebraic constraints, the equations for calculating the ;(t) waveforms
need to be solved only at the discrete points in time used to calculate
the n;(¢) waveforms.

The inherent advantage of the WR approach is that the differential
equations are solved in a decomposed fashion, and therefore different
sets of timesteps can be used at different mesh points to calculate the
time evolution of the electron concentration. The method exploits
multi-rate behavior. In MOS devices, the rate at which electron con-
centrations evolve may be very different in the channel compared to
the source or the drain. Therefore, WR may prove to be efficient for
the device simulation problem, provided it converges, and doesn’t take
too many iterations. This is the subject of the next section.

4 Theoretical Results

As is usually the case for waveform relaxation algorithms applied to
systems of differential equations, Algorithm 1 converges to the solution
of the differential-algebraic system for any initial guess that matches
the initial conditions. The precise statement is given in the following
theorem.

Theorem 1 Given a finite interval [0, T}, and any initial guess n°(t)
and Y°(2), t € [0, T), such that n°(0) = no, the sequence of waveforms
produced by Alg. 1 converges to the ezact solution of the system given
by equations (4) and (5).
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The proof of the above theorem follows the same steps as the
Picard-like proofs of waveform relaxation for ordinary differential equa-
tions [10]. First the equations that describe the difference between one
iteration and the next are organized into the form

§Y*+! = ASYF + Bén*(t) (6)

and

571"“(1)=/0 ™ 1(0), 0" (1), w4 (1) = £k (2), m* =1 (0), 51 (2))]
M
k

= nf - The matrices 4,B €
and the function f : R™¥mxm _, pm are constructed from

where §¢f = vF — 1[;!‘_1, 6n¥
§Rmxm

k=1
ﬂ'- .

the iteration equations in Alg. 1. The next step is to show that (6)
and (7) represent a contraction. To this end, consider an interval of
time short enough to insure equation (7) represents a contraction with
respect to n for a fixed ¢. That (6) is a contraction with respect to
¥ for a fixed n is well-known [8], as (6) represents relaxation applied
to the Poisson equation. One can fit the two contractions together to
show that relaxation applied to the coupled system converges.

The above proof outline suggests that the WR algorithm converges
in a nonuniform manner. That is, first convergence is achieved over a
short time interval, set by what is needed to make (7) a contraction,
then over the next short time interval, and then the next, continuing
slowly, until the convergence is achieved throughout an entire interval
of interest. When applied to general differential equation systems, like
circuits, WR does demonstrate this nonuniformity in the convergence
[7], but WR does not usually show nonuniformity when applied to the
transient device simulation problem.

In order to analyze why this is the case, we will consider a model
problem of just the differential equation associated with the electron
concentration, n and assume that the potential ¥ is known. The WR
iteration update equation for this case is then

D02 B winf = Bl =] = 2 (St ) =0 o
i

for each i € {1,...m}. Note that given ¢, (8) is a linear time-varying
differential equation in n. For this problem we have the following
theorem:

Theorem 2 If at each time t, Y(t) is such that the electric field along
any vertical or horizontal line is either constant, or monotonically in-
creasing, then (8) is a contraction in a uniform norm on any finite
interval [0, T). That is,

mazp l|6n* T ()] < ymaz(o 7)||6n* (2)||

(9)
where v < 1.

The proof of Theorem 2 is given in the appendix.

Since allowing the different differential equations to take very dif-
ferent timesteps is WR’s main advantage, if this property were limited
to insure convergence, the WR. algorithm would not be effective. For-
tunately, that the WR algorithm is a contraction in a unform norm
on any interval implies that the timesteps used to numerically inte-
grate the differential equations are almost unconstrained. Given that
the different differential equations use different timesteps, interpola-
tion must be used to communicate results between equations, and if

not done carefully this can cause nonconvergence. Linear interpola-
tion is certain not cause problems, and therefore we have the following
theorem [7]:

Theorem 3 Let each of the m independent WR iteration update equa-
tions given in (8) be solved numerically with backward-Euler, with m
different sets of timesteps. In addition, assume thal linear inlerpola-
lion is used to derive values for the n}s between time discretization
points. Then this multirate discretized WR algorithm for (8) con-
verges, regardless of the timestep selections.




5 One Dimensional Experiments

Except for Theorem 1, the above theoretical results only apply under
certain conditions, and are only an indication that the WR algorithm
may be effective. In order to verify that the theoretical results apply in
actual simulation, 2 one-dimensional transient device simulation pro-
gram was written and applied to a one-dimensional approximation of
an MOS device with a conducting channel. The doping distribution
for the one-dimensional device is given in Fig. 1, where the tick marks
denote the mesh points. Potential and electron concentration bound-
ary conditions were given at z = 0.0 and z = 3.0u. The boundary
values for the electron concentration were computed assuming charge
neutrality at the “contacts”.

The relaxation process was tested by first solving the static problem
with zero volts across the “device”, and then making a step change of
five volts. Even with this simple example, the variable-by-variable
WR algorithm as given in Alg. 1 was ineffective. The iterates did not
converge in a uniform manner, and they converged very slowly.

In order to improve convergence, rather than using variable-by-
variable decomposition, we partitioned the problem into blocks based
on two techniques. First, we associated the electron concentration at
node i, n;(t) with the potential ¥;(¢) at that node. Then, in order
to try to satisfy the assumptions of Theorem 2, we placed together
neighboring nodes where we expected rapid changes in the electric
field. The resulting partitioning of the nodes are boxed in Fig, 1.

The resulting waveform iterations for the slowest converging vari-
able, the electron concentration for the mesh point where the doping
changes abruptly, is plotted in Fig. 2. As the figure indicates, with
the partitioning just described, the WR, process converges in just a fow
iterations and the contraction is uniform through time as predicted by
Theorem 2. The simulation was rerun with very coarse timesteps to see
the effects on convergence, and the WR iterations for the same node is
plotted in Fig. 3. As the figure indicates, using coarse timesteps does
not effect the overall convergence, although the convergence for small
t is slowed.

6 Conclusions and Acknowledgements

In this paper we presented some preliminary results that indicate the
WR algorithm may indeed be efficient for device transient simulation.
In particular, it was shown that under conditions that can be arranged
for in practice, the WR algorithm is a contraction in a uniform norm
on any interval [0, T]. Also, given these same conditions, the relaxation
process will still converge even if very different sets of timesteps are
used for the individual iteration equations. Finally, we verified the
theoretical results on a one dimensional example.

There are several aspects of WR. that need to be addressed if this
method it to be efficent for two-dimensional MOS transient device sim-
ulation. Most important, a general algorithm for blocking the device
must be developed. An efficent approach for determining what dis-
cretization points to use for the algebraic constraints must be consid-
ered. In addition, the efficiency of WR methods can also be improved
by refining the timesteps with iterations, or using a single waveform-
Newton iteration to solve the nonlinear WR, iteration equations.

The authors would like to thank W. Van Bokhoven for suggesting
this research area and John Wyatt for his suggestion on the proof of
theorem 2. This work was supported by the Defense Advanced Re-
search Projects Agency contract N00014-87-K-825, and the Ajr Force
Office of Scientific Research grant AFOSR-86-0164.
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A Proof of Theorem 2

The WR iteration equations applied to the model problem (8) can be
described as

n () = D)nFH(t) + M(tn* (1) (10)
where D(t), M(t) € ™", and D(t) is negative diagonal matrix. The
assumptions about the electric field result in values for the Bernoulli
functions such that D(t) and M(2) will satisfy the relation

sl 2 6+ 32 s

#i

(11)

where & > 0 and is strictly greater than zero for those ’s correspond-
ing to the mesh points next to the boundaries. Note that this implies

DG MLy (12)

for ¥ < 1, for some norm on £"*" and for all ¢.

Given the relationship between D(t) ahd M(t), the WR algorithm
applied to a system of the form of (13) will contract in a uniform
norm. This has been shown for the case when D(t) and M(1) are
independent of ¢, using Laplace transforms [2]. In the time dependent
case, the result can be shown by examining the difference between
iteration k and k + 1 of (13) to get

Snft(t) = di(D)snFT (1) + D mi;()enk(1)
i]

(13)
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for each mesh point i, where §n¥(t) = n¥(2) — nf~1(2). By assumption,
dii(t) < 0 and 6n¥(0) = 0. Therefore,

5 (t
maz;loyﬂlénf“(t)] < Emax[o,;r]|%((t)”maz[o,'r]l&n?(t)l.
13

i#j

(14)

Equation (14) follows from the fact that for all values of §n*+1(t) on
the boundary of (or outside) the bounded region 6nf*!(t) points back
into the bounded region [6].

Assembling the equation system from (14) results in
mazo 1l6n* 1 (1) < mal[o,TﬂD(t)_lM(t)lmaz[o,Tﬂénk(t)i- (15)
Then in the norm for which [[D()"*M ()|} < v < 1.0,

mazyo,m)llén*+ (1)]| < ymaze,myflén* (). (16)

which proves the theorem.




