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Abstract

The transient behavior of circuits like switching power con-
verters and switched capacitor filters are expensive to simu-
late because these circuits are clocked at a frequency whose
period is orders of magnitude smaller than the time interval
of interest to the designer. It is possible to reduce the simu-
lation time without compromising accuracy by exploiting the
property that the behavior of such a circuits in a given high
frequency clock cycle is similar, but not identical, to the be-
havior in the preceeding and following cycles. In particular,
the “envelope” of the high-frequency clock can be followed
by accurately computing the circuit behavior over occasional
cycles. In this paper the implementation of such an envelope-
following method that is particularly efficient for switching
power and filter circuits is described, and results demonstrat-
ing the method’s effectiveness are presented.

1 Introduction

In general, analog circuit designers rely heavily on circuit simu-
lation programs like SPICE [nagel75] or ASTAP [weeks73] to
insure the correctness and the performance of their designs.
These programs simulate a circuit by first constructing a sys-
tem of differential equations that describes the circuit, and
then solving the system numerically with a time discretization
method such as backward-Euler. When applied to circuits
like switching power converters or switched-capacitor filters,
such classical circuit simulation algorithms become extraordi-
narily computationally expensive. This is because switching
power converters and switched-capacitor filters use high fre-
quency clocks whose periods are typically orders of magnitude
smaller than the time intervals of interest to a designer. The
nature of the calculations used in a circuit simulator implies
that to construct the solution over the time interval of inter-
est, an accurate solution must be computed for every cycle
of the high frequency clock in the interval, and this can in-
volve hundreds of cycles. The infeasibility of simulating such
circuits with classical techniques has led frustrated designers
to develop specialized analog computers on which to do their
simulation [kassakian79).

Fast approximate techniques have been developed for sim-
ulating switching power converters and switched capacitor fil-
ters, but the two problems are approached quite differently.
The most common approach to simulating switched capacitor
filters is first to break the circuit up into functional blocks
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such as operational amplifiers and switches, and replace each
with a simple macromodel. It is then assumed that after each
clock transition, every node in the circuit reaches its equilib-
rium point before another transition occurs. This assumption,

along with the use of algebraic macromodels, allows the filter

to be treated as a low order discrete-time system whose so-
lution for hunderds of clock cycles can be computed quickly
[tsividis79, deman80]. The most common techniques for sim-
ulating switching power converters is to treat the switches as
ideal, and the remaining circuitry as linear. With this ap-
proximation, the solution over hundreds of clock cycles can be
computed rapidly [hsiao87].

Although programs based on the above techniques have
served designers well, they are based on idealizations of the
circuits involved which may eliminate behavior that is impor-
tant to a designer. In this paper we present an approach for the
detailed transient simulation of switching power and filter cir-
cuits which does not involve any idealization of the behavior,
and is much more efficient than classical direct methods when
the clock period is small compared to the simulation interval.
This method, referred to as envelope-following [petzold81]
exploits the property of such circuits that the node voltage
waveforms over a given high frequency clock cycle are similar,
but not exact duplicates, of the node voltages waveforms in
proceeding or following cycles. This suggests that it is possi-
ble to construct a solution accurate over many high frequency
clock cycles by calculating the solution accurately for a few
selected cycles.

In the next section, we present the details of an envelope-
following method that is eflective for many types of switching
circuits. In Section 3 we describe some of the computations
involved in the method. Their implementation in the program
Nitswit along with results from using Nitswit to simulate sev-
eral switching power and filter circuits is described in Section

4.

2 The Envelope-Following Method

Most circuits can be described by a system of differential equa-
tions of the form

2 plee), u(t)) + F(=(0), w(®) =0, &)

where z(t) € RY, the state, is the vector of capacitor volt-
ages and inductor currents, u(t) € RM is the vector of input
sources, p(z(t),u(t)) € RV is the vector of capacitor charges
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and inductor fluxes, and f(z(t), u(t)) € RV is the vector of re-
sistive currents and inductor voltages. If the state = is known
at some time 1o, it is possible to solve (1) and compute the
state at some later time ¢,. In general, one can write

z(t1) = 2(to) + ¢(2(to), to, £1) (2

where ¢ : R” X R x ® — K" is a state transition function for
the differential equation.

We now consider that the circuit to be simulated has as
an input a clock with known period T that is much smaller
than the simulation interval. In addition, we assume the se-
quence formed by sampling the state at the beginning of each
clock cycle, z(O),x(T),:c(2T), ooy z(mT),..., changes slowly
as a function of m, the clock cycle number. For such a circuit,
a designer is usually interested in the transient behavior of
an envelope of the solution, which we define as the continu-
ous function derived by interpolating the sequence formed by
sampling the state every time interval T. Note that our use
of “envelope” is not the cornmon usage. Here, the envelope is
not unique given xz(t); the envelope generated by interpolating
the sequence z(0 -+ ), 2(T + 1), 2(2T + 7),... depends on 7.

A “differential-like” equation can be written for the elements
of the sequence z(0), z(T), z(2T), ... associated with one en-
velope of the solution to (1). Applying (2), the elements of
the sequence can be related by

#(mT) = z((m = 1)T) = ¢(2((m — 1)T), (m - )T, mT). (3)

The relation in (8) indicates how rapidly the initial point of
each clock cycle changes from one cycle to the next, and in
that sense is like a differential equation. This similarity can
be exploited to derive methods for approximately solving for
the 2(mT)’s. For example, the value of z((m + )T) can be
approximated by

z((m+DT) - z((m+ DT) ~ (I - 1)¢(2(mT), mT, (m+1)T),
(4)

which is loosely analogous to solving a differential equation by

forward-Euler. )

To compute an envelope for a system with period T using a
forward-Euler envelope~following algorithm with a fixed cycle-
step [, a simple repetitive two-step process can be used. Given
z(0), the first step is to calculate z(T") by solving (1) over the
interval [0, T) using a standard discretization technique. The
second step is to set 2(IT") = z(T) + (I = D=(T) — z(0)].
This process is repeated to compute (20T), z(3{T),.... Note
that calculating the solution over a long interval only requires
solving the differential equation every I** cycle.

Although simple to describe, a forward-Euler based
envelope-following method is not very effective for solving
switching circuits because maintaining stability severely limits
the size of the cycle-step I, just as with the standard forward-
Euler algorithm. A more stable algorithm is to approximate
the value of 2((m + I)T) by

e((m+)T)~z(mT) ~ ($(z((m-H~-1)T), (m+1-1)T, (m+0)T),

(%)
which is analogous to backward-Euler for the differential case.
This approach allows for larger cycle-steps than the forward-
Euler based approach, but leads to more a complicated equa-
tion to compute each cycle-step. To see this, consider com-
puting z(IT') given 2(0) based on (5). An z((I - 1)T) must be

found such that when used as an initial condition for (1), the
z(IT") computed with standard discretization techniques sat-
isfies 2(IT") — 2(0) = l[=(IT) — z((I - 1)T)] This is a boundary
value problem, and is in general difficult to solve. For the case
of switching power or filter circuits, the above boundary value
problem can be solved efficiently using a Newton method, and
this is presented in the next section.

3 Solution by Newton

As mentioned in the previous section, each cycle-step of the
backward-Euler envelope-following method requires the sirmul-
taneous solution of

2((m+ 0T) - 2(mT) = l[z((m+ )T) - z((m+1-1)T)] (6)
and

2((m+0T) ~z((m+1-1)T) =
(@((m+1-1)T),(m+1- 1T, (m + nT). ]

for ((m+1-1)T) and z((m+1)T), where where z(mT) is pre-
sumed known. Therefore, (6) and (7) represents 2n equations
in 2n unknowns.

An iterative Newton’s method can be applied to solving the
above system. In general, the Newton method applied to the
problem of finding an # € R" such that Fl@)=0,F: % —
R", yields the iteration equation Ip(z*)[z* 1 —2*] = —F(zF),
where k is the Newton iteration count and Jr € R™**" ig the
Jacobian of F. Reorganizing (6) and (7) into the form to apply
Newton’s method leads to

(L =Da((m+ NT) + le((m + 1 - 1)T) - z(mT)

2((m+ T) = a((m + 1 - 1)T) = 4() (®)
=F(e((m+)T),a((m+1-1)T) =0 (9
(10)

In this case, Jp(z((m + )T),z((m + { - 1)T)) is given by

1-0rI, i,

where I, is the identity matrix of size n.

The most time-consuming computation in this Newton it-
eration is evaluating Jp and F, which involves computing the
state transition function, ¢(z((m+1—1)T), (m+1-1)T, (m+
0T), and its derivative. The state transition function can be
evaluated by numerically integrating (1) from (m +1—1)T to
(m + 0T given z((m + 1 — 1)T). The derivative of the state
transition function, referred to as the sensitivity matrix, rep-
resents sensitivity of ((m+1)T) to changes in z((m+1-1)T),
and can be computed with a small amount of additional work
during the numerical integration.

To show how the computation of the state transition func-
tion and its derivative fit together, consider numerically inte-
grating (1) with backward-Euler, which we chose for its sim-
plicity and because it appears to be one of the better formulas
for clocked analog circuits. Given some initial time ¢y and
some initial condition, z(%p), applying backward-Euler to (1)
results in the following algebraic equation,

9(2(to+h), 2(to)) = %(P(w(to+h))—P(w(to)))+f(z(tn+h)) =0
(12)




where h € R is the timestep. Note we have dropped explic-
itly denoting the dependence of p and f on the input u for
simplicity.

Equation (12) is usually solved with Newton-Raphson, for
which the iteration equation is

To(z®(to + R)(a* D (kg + h) — 2B (ko + B)) = (13)
~g(a®(to + h),z®(t0))  (14)

where J (z(t)) € RV*¥ is the Frechet derivative of the non-
linear equation in (12) and is given by

 Bg(a(t),) _ 19p(=(1)

. 0f(=(1))
Jo(z(t)) = az(t)  h 0z(t)

oz(t)

(15)

Solving (12) yields an approximation to z(to + h) =
#((to), to,to + h). Implicitly differentiating (12) for z(to -+ h)
with respect to z(tg) yields

dz(to+h) _ 19p(z(tp))

dz(te)  h 0z(t)

Jg(2(to + h)) (16)

Given a z(to), (12) can be repeatedly applied to find
z(to + T) = ¢(z(0), %0, %0 + T'), and (16) can be repeatedly
applied to find the sensitivity matrix dz(fo 4+ T)/0z(to) =
9¢(z(to), to, ta+T)/02(to) [aprille72]. Note that J; is required
in both (14) and (16), and thus the sensitivity matrix update
can be made more efficient by factoring J, once and using it
for both computations. However, the sensitivity matrix is still
expensive to compute, because it is an N x N {ull matrix.

4 Implementation and Test Results

An envelope-following method has been implemented in the
Nitswit [kundert88] simulation program. The program is writ-
ten in “C”, and runs under the UNIX operating system. The
program uses a trapazoidal-rule based envelope-following al-
gorithm in which the cyclesteps are selected based on local
truncation error. The boundary value problems generated at
each cyclestep are solved with the Newton method described
above.

Two techniques are also used to itnprove the efficiency of the
basic algorithm. Although switching power supplies and filters
are not linear circuits, the state transition function over one
cycle is a nearly affine (linear plus a constant). This property
can be exploited to reduce the computation by only comput-
ing Jp for the boundary value Newton method on the first
iteration at each timestep. This is a significant savings, as
then the sensitivity matrix need only be computed once per
timestep. The second technique that reduces the computation
time is based on the fact that the explicit forward-Euler based
envelope-following method is stable for cyclesteps of size two
or less. This implies that if truncation error considerations
determine that a cyclestep of two or less is appropriate, the
boundary value problem can be avoided, and the step can be
computed easily.

Exactly how the envelope-following method behaves can be
seen by examining figures 1 and 2 below. Figure 1 is the solu-
tion to a buck-derived circuit(from [hsiao87]) computed with
classical direct method, where the exact solution is only shown
between 1 and 2 milliseconds because of point limitations in
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Figure 1: Buck Converter Solution Computed with the Clas-
sical Method

the plotting program, and Figure 2 is the result produced by
the envelope-following method. As can be seen, the envelope-
following method computes many fewer cycles, but the ones
computed match with the direct method.

In the table below we present a comparison between the cpu
time used by classical and envelope-following methods in sim-
ulating the start-up transient from three types of switching
power supplies, a push-pull flyback converter, fly, a resonant
converter (from [casey87]), res, and a buck-derived circuit,
buck; and the step response from a switched-capacitor low-pass
filter. In each case, the clocking is provided by a user-defined
source. As can be seen from the table, the envelope-following
method can be very efficient, particularly when the simulation
interval is long compared to the clock cylce.

Circuit | Nodes | Inteval/Clock | Classical | Env. Follower.
scop 13 200 601 153
buck 8 1000 940 97
quast 7 200 144 38
fly 32 40 274 167

Table 1: CPU Time (in seconds) Comparisons for Classical vs
Envelope-Following simulation, based on a SUN4
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Figure 2: Buck Converter Solution Computed with Enve-
lope-Following

5 Conclusions
ments
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In this paper it is shown that an envelope-following approach
to the simulation of switching power and filter circuits can
provide substantial speed improvements over classical simula-
tion methods. Several aspects of the method are still under
investigation. In particular, it has been observed that most
of the entries in the sensitivity matrix remain close to zero,
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effectiveness of the envelope-following is somewhat dependent
on where the cycle boundaries are placed, and an automatic
selection method is desirable.
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