A Band Relaxation Algorithm for Reliable and Parallelizable Circuit
Simulation

A. Lumsdaine J. White

D. Webber!

A. Sangiovanni-Vincentelli!

Research Laboratory of Electronics
Dept. of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

A variable-band relaxation algorithm for solving large lin-
ear systems is developed as an alternative to Gauss-Jacobi
relaxation. This algorithm seeks to improve the reliability of
Gauss-Jacobi relaxation by extracting a variable-sized band
from the matrix and solving that band directly. This leads to
a relaxation algorithm with provably better convergence prop-
erties. Furthermore, this algorithm can be used effectively on
a massively parallel computer, because band matrices can be
solved in log(n) time on % processors. Test results are pre-
sented which compare the convergence properties of variable-
band relaxation to Gauss-Jacobi relaxation.

1 Introduction

Designers of high performance integrated circuits make ex-
tensive use of circuit simulation programs like SPICE and
ASTAP [NAG, WEE] in order to tune their designs before
fabrication. These circuit simulation programs often require
hours or days to complete a single simulation because they
use computationally expensive, but very reliable, numerical
techniques. Since many simulations are performed to design
a given integrated circuit, slow simulator turn-around time
can significantly increase overall design time. For this reason,
using parallel processors to reduce the execution times of cir-
cuit simulation programs has been the focus of much current
research[COX, JAC].

Programs like SPICE and ASTAP use implicit multistep in-
tegration algorithms to convert the differential equation sys-
tem to a sequence of algebraic problems, one for each inte-
gration timestep. The algebraic problems are solved using an
iterative Newton method, each step of which involves lineariz-
ing the circuit about some guessed solution, and solving the
generated sparse linear system. Good parallel speed increases
have been achieved for the linearized system construction, but
not for the sparse linear system solution, particularly if there
are many (more than 128) processors.

For machines with many processors, a technique that is ef-
fective for MOS circuits is to use Gauss-Jacobi relaxation(GJ).
Since the GJ algorithm solves a system of equations by repeat-
edly solving each equation independently for its associated un-
known and then passing around the computed values, GJ eas-
ily exploits as many processors as there are equations {o be

1Dept. of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

CH2657-5/88/0000/0308$01.00 © 1988 IEEE

308

solved. Although guaranteed to converge under certain condi-
tions, GJ can be inefficient if the timestep required to achieve
convergence is very small. Also, GJ can be unreliable because
in some cases convergence may be indicated when the result is
far from the correct solution. An approach to improving the
reliability of GJ while maintaining a very parallel algorithm
is to extract a variable-sized diagonal band of the matrix and
to solve that band directly. This leads to a relaxation method
with provably better convergence properties. Band relaxation
is still very parallelizable because band matrices can be solved
in order log(n) steps, given order n processors where n is the
number of equations in the system.

In Section 2, we develop the variable-band relaxation algo-
rithm as a generalization of GJ. A method for sorting a matrix
to improve the performance of the banded-relaxation is pre-
sented in Section 3, and we discuss how to incorporate the
variable-band algorithm into a circuit simulation program. In
Section 4, GJ and the band relaxation algorithm are used in
a circuit simulator and the results from the transient analysis
of several different circuits are compared. Finally, we present
our conclusions and some suggestions for future research.

2 Variable-Band Relaxation

As mentioned above, the iterative Newton method is used to
solve the nonlinear algebraic problem associated with each
timestep of the transient analysis of a circuit, and each itera-
tion of the Newton method involves computing the solution to
a sparse linear system. Specifically, for each Newton iteration
an z must be found such that Az = b, where A € R"*" is the
Jacobian of the nonlinear system, z € R"™ is usually the vector
of node voltage updates, and b € R" is usually the vector of
sums of currents entering each node. In most circuit simula-
tors the matrix problem is solved with some form of sparse
Gaussian elimination, which is difficult to parallelize{WIN).

More easily parallelized methods for solving the sparse ma-
trix problem are the iterative relaxation algorithms, the sim-
pliest of which is the well-known GJ relaxation. In GJ, the
solution to a system of equations is computed by solving each
equation independently for its associated unknown, and then
exchanging the computed values, repeating the process un-
til a consistent solution throughout is achieved. The element
update equation for GJ can be written compactly as

n
k41 k
zﬂ' = by — Z aijzi |,

j=Lj#i

1
aii

1)

where k is the iteration index and a;; is the ¢ §*% entry of the
matrix A.

As the equations represented by the rows in A are solved in-
dependently, GJ can easily exploit n processors effectively. In
addition, GJ is guaranteed to converge when applied to solv-
ing the matrices generated by the transient analysis of MOS
circuits, if the timestep is small enough and there is a capaci-
tor to ground at each node. The difficulty with GJ is that it
is inefficient if the timestep required to achieve convergence is
very small, and GJ is unreliable because false convergence is
common due to the limited spread of information with each
iteration[DUE,SAL,WEB,WHI].

To see how to construct more reliable relaxation methods
with nearly as much parallelism, it is helpful to cast relaxation
into a more general frame. Any two matrices M,N € ®""
are said to be a splitting of the matrix A if A= M — N. The
iteration equation for a relaxation algorithm based on a given
splitting is then .

(2)

MzF+! = Nz* 4+ b,
and the asymptotic rate of convergence is the spectral radius of
(M~1N)[VAR]. The goal is to select a splitting in which M is
easy to factor and the convergence of (2) is fast. Furthermore,
since the objective is to produce an efficient parallel algorithm,
M should be easy to factor in a parallel fashion.

For the case of GJ, M is a diagonal matrix whose elements
are the diagonals of A and is already in factored form. This
leads to a very efficient parallel algorithm, but one which has
poor convergence properties. One would expect that move-
ment of off-diagonal elements of A from N to M would ac-
celerate the convergence, because more of the system is being
solved directly. This conjecture can be proven for the case of
an A which is diagonally dominant with positive diagonals and
negative off-diagonals[VAR]. If M is selected to be a band ma-
trix with a band-size much less than n, then by using parallel
cyclic reduction or nested dissection[DUF], M can be factored
in order log(n) steps on a parallel processor with order n pro-
cessors[DON]. The relaxation algorithm generated by using a
banded M will be referred to as “band relaxation”.

3 Equation Ordering and Band-Size
Selection

If a band relaxation scheme is used, the ordering of the equa-
tions in A will determine which off-diagonal elements are in
the band, so it is possible to change the convergence properties
of the relaxation by reordering A. We desire a good heuris-
tic algorithm that will order A so as to reliably improve the
convergence properties of the relaxation, while at the same
time allowing the use of an M with as small a band-size as
possible. Because of the physical significance of the matrix 4,
one would expect that placing the matrix entries correspond-
ing to tightly-coupled circuit nodes into M would improve the
convergence of the band relaxation.

 The matrix M is derived by first constructing a graph based
on A which has edges between pairs of nodes only if the pair
of nodes is “tightly coupled.” The so-constructed graph of the
matrix A is reordered to minimize the bandwidth of M us-
ing the Reverse-Cuthill-McKee (RCM) algorithm{DUF,GEQ].
This produces an ordering for A which will insure that the
tightly coupled equations lie together in an easily extracted
band, i.e. in M. Note that the band-size for M is automati-
cally produced in the ordering process.

309

A suggested heuristic|WHI] for finding tightly coupled pairs
of nodes i,j is to examine the spectral radius, p, of the GJ
relaxation iteration matrix applied to the to a 2 x 2 problem
generated by deleting all but the i** and j** rows and columns
of A. In particular,

aijaji

: 3

p=

aiij

Nodes i and j are considered to be tightly-coupled if p is close
to or greater than unity.

However, consideration of only the spectral radius is not
a good method for improving the rate of convergence of GJ.
For example, consider a lower-triangular A with large sub-
diagonal entries. The spectral radius of (M~3N) is zero, but
order n GJ iterations will be needed to achieve convergence.
The transient analysis of MOS circuits can produce a highly
non-symmetric A, and the coupling test implied by (3) may
miss nodes which are tightly-coupled in only one direction.
Requiring that nodes i and j be grouped together if

ma.xz(aj,-, a,-,-)

>
lagiaj;]

O

will ensure that strong one-way couplings are included into M.

The last step in developing the variable-band relaxation al-
gorithm is selecting a value for e. For a given circuit, selecting
a fixed value for a is a somewhat arbitrary process. While it
might seem like a desirable goal to be able to select an & which
will produce a desired rate of convergence, it is not clear in
large systems how the choice of & will affect the convergence
rate. However, one way to “tune” the value of to a particu-
lar circuit is to adaptively adjust the value of o and monitor
the effect on the band-size of M. Since we are generally solv-
ing large, very sparse systems, if an ordering existed such that
M = A (e.g. a tridiagonal A), the band-size of M would still
be small compared to n. This suggests that maximum effi-
ciency can be obtained if we require that the band-size of M
be at least {341, where m is the total number of entries in A
and [2] is the smallest integer greater than or equal to 2. To
accomplish this, on the initial ordering of A, an « should be
selected which produces a band-size of M equal to []. There-
after, and for all subsequent reorderings, o can be temporarily
decreased from its initial value in order to include the maxi-
mum number of elements into M without increasing the initial
band-size.

The following are the adaptive sorting and the band relax-
ation algorithms (expressed in pseudo-code):

Algorithm 1 (AS) Given 4, M € R"*", A having m ele-
ments, and M being the band to be extracted from A4, this
algorithm orders A so as to put as many tightly-coupled ele-
ments as possible onto a band with size of at least [Z}].
MRCM(4, a)
While band-size(M) < [F]
Shrink(ea)
MRCM(4, «)
ni=«
B := band-size(M)
While band-size(M) = 8
Shrink(7n)
MRCM(A,n)

The function MRCM(A4,a) sorts A with the modified
Reverse-Cuthill-McKee algorithm mentioned above, using a
coupling criterion of .

Algorithm 2 (BR) Given z,b € ®" and A, M € R***, M
being the band of tightly coupled elements contained in 4,
this algorithm solves Az = b iteratively for z.

band-LUdecomp(M)

z0:=10
Fork =1,2,...
Fori=1,2,..,.N
sum:=0

Forj=12,.,.N
Ifj<i—porj>i+p
sum := sum - a,'ja:;’
b, := b; — sum
band-solve MzF+! = p/
If zF+1 converged with ¥, break
If £ > max-iter, signal failure

The routines band-LUdecomp and band-solve perform the ob-
vious functions, but are optimized for banded systems.

Since the circuits being simulated are nonlinear, the values
of the elements A will change during the course of the sim-
ulation, possibly worsening the convergence characteristics of
BR. While it may be possible to improve the convergence of A
by taking smaller time steps, it has been empirically observed
that it is best to reorder whenever BR fails to converge. Note
that in this dynamic reordering process, the band-size of M is
likely to change. Combining AS with BR. gives our final result,
the variable-band relaxation algorithm:

Algorithm 3 (VBR) Given a circuit simulation program
using an iterative Newton method to solve the nonlinear al-
gebraic problem associated with each timestep of the tran-
sient analysis of a circuit, where each iteration of the Newton
method involves computing the solution to a sparse linear sys-
tem, Az = b, A € R"*" being the Jacobian of the nonlinear
system, this algorithm provides a method of incorporating BR
into the simulation program.

Sort A once according to AS at the beginning of the simu-
lation.

Use BR. to solve the linear system Az = b generated at each
Newton iteration.

If the BR fails, reorder A according to AS and signal Newton
non-convergence.

Note that VBR can also be used in a nonlinear relaxation
algorithm for the Newton method solution. Nonlinear relax-
ation uses the same iterative solution technique as the stan-
dard Newton method, but instead of solving the linear sys-
tem exactly at each time step, one relaxation iteration is per-
formed. Since VBR has better convergence properties than
GJ in the linear case, one would expect that it would also
accelerate nonlinear relaxation.

4 Test Results

The algorithms above were coded in € and incorporated into
a circuit simulation program for a serial computer. The fol-
lowing circuits were selected as test examples:

310

dac: DAC circuit, n = 149, (] = 5,

lin: Linear RC line, n = 601, (2] = 3.

opamp: Opamp circuit, n = 52, (] =7,

pla: PLA circuit, n = 66, (&)= 5.

rccl: High-speed CMOS static RAM control circuit, row
access simulation, n = 149, [2] = 5.

rcc2: Identical to rcel, but with parasitic resistances at ev-
ery MOSFET drain and source, n = 703, [Z] = 5.

shmem: Shared memory read circuit, n = 759, ['—;?] = 5.

Note that rcc2 is an especially difficult circuit for a relaxation-
based simulator, due to the large number of parasitic elements.
The transient analysis conducted on each circuit example was
the same regardless of the linear solution method. Relaxation
failure was indicated if the relaxation method failed to con-
verge within 32 iterations.

The following tables of results demonstrate the effectiveness
of the VBR algorithm. The number of Newton iterations re-
quired for direct, GJ, and VBR solution methods, as well as
the number of relaxation iterations required for GJ and VBR
are shown in Table 1. Table 2 shows the number of relaxation
failures for GJ and VBR, [2], and the maximum band-size of
M used during VBR. Note that there is very little difference
in the number of Newton iterations between VBR and direct
methods, but that there is a significant difference in the num-
ber of Newton and relaxation iterations between GJ and VBR.
As a relaxation method, VBR combines the parallelism of GJ
with the efficiency and reliability of direct methods.

Newton Iterations Relaxation Iterations

Circuit | Direct GJ VBR GJ VBR
dac 2013 1999 1978 10871 7856
lin 148 8364! 148 | 1280051 230

opamp 347 765 397 11077 1620
pla 737 2423 729 31558 3448
recl 3223 3266 3233 21143 13247
rec? 4837 36455' 5068 | 1575981 29260
shmem 624 812 655 11205 2317

Table 1: Number of Newton Iterations for Direct, GJ, and
VBR. Solution Methods; Number of Relaxation Iterations for
GJ and VBR Methods.

Relaxation Failures
Circuit | GJ VBR [2] Max Band-Size
dac 6 1 5 13
lin 2000! 0 3 3
opamp 143 1 7 13
pla 341 0 5 9
reel 14 0 5 5
rec? 20001 4 [11
shmem 89 0 5 13

Table 2: Number of Relaxation Failures for GJ and VBR,
Value of [2], and Maximum Band-Size Used During VBR.

1Simulation terminated before completion due to excessive number of
relaxation failures (2000).

Finally, the VBR algorithm was used in conjunction with a
nonlinear relaxation scheme, in which only one relaxation iter-
ation was made for each Newton iteration. Table 3 shows the
total number of Newton iterations required for GJ and VBR.
Note that VBR shows a dramatic improvement in most of the
circuits, a factor of almost 100 for pla. In fact, the nonlinear
VBR method uses no more Newton iterations than the direct
method, but in a parallel implementation each iteration would
be much cheaper.

Circuit | Direct GJ VBR
dac 2013 3522 2813
lin 148 179890% 148

opamp 347 6958 818

pla 737 119791 1319
reel 3223 9223 4264
rec? 4837 ‘ 20726
shmem 624 19497 1082

Table 3: Number of Newton Iterations for Direct Solution
Method and Number of Nonlinear Relaxation Iterations for
GJ and VBR Methods.

- One may ask if it is possible to find a static ordering a
priori which can be used throughout the transient simulation.
From our experimental results, the answer is no. One logical
candidate for a good static ordering would be the final ordering
used in a transient simulation. We tested this hypothesis with
ree?, since it was the only circuit tested which required more
than one reordering. The result was that the VBR had to
reorder one more time than in the first case; it had to undo
the initial ordering it was given, even though this was the
ordering it used later on in the simulation. This is not to say
that a static ordering does not exist, only that it does not
seem easy to find using the methods described in this paper.

An obvious extension to variable-band relaxation is to use
a banded pre-conditioner with conjugate-gradient methods.
Some preliminary experiments were conducted along these
lines, but the results were not encouraging, and are not in-

cluded here.

5 Conclusion

In this paper, a variable-band relaxation algorithm for solving
large linear systems was developed as an alternative to Gauss.
Jacobi relaxation. This algorithm improved the reliability of
GJ, while preserving the easily exploitable parallelism, by ex-
tracting a variable-sized band from the matrix and solving that
band directly. Test results were presented which compared
the convergence of variable-band relaxation to Gauss-Jacobi
relaxation.

There are some extensions to the work presented in this pa-
per that may be worth exploring. For instance, the heuristic
used for grouping nodes together on the band could be made
more sophisticated; something similar to the conductance par-
titioning idea in [WHI] might work well. An implementation

!Simulation terminated before completion due to excessive number of
relaxation failures (2000),

?Simulation terminated before completion due to Newton non-
convergence.

of the VBR algorithm is currently being designed for the Con-
nection Machine, but implementations for other architectures
should be pursued as well.

ACKNOWLEDGEMENTS

This work was supported by the Defense Advanced Re-
search Projects Agency contract N00014-87-K-825. The au-
thors would like to thank the professors and students in the
Custom Integrated Circuits Group at MIT and the personnel
at Thinking Machines, especially Lennart Johnsson.

References

[COX] P. Cox, R. Burch, B Epler, “Circuit Partitioning for
Parallel Processing,” IEEE Int. Conf. on Computer-
Atded Design, pp. 186-189, Nov. 1986.

[DEU} J. T. Deutsch, A. R. Newton, “MSPLICE: A
Multiprocessor-Based Circuit Simulator,” Int, Conf
Parallel Processing, pp. 207-214, May, 1984.

[DON] J. Dongarraand S. Lennart Johnsson. “Solving banded
systems on a parallel Processor,” Parallel Computing,
5(1&2):219-246, 1987.

[DUF] 1. S. Duff, A. M. Erisman, and J. K. Reid, Direct
Methods for Sparse Matrices, Clarendon Press, Oxford,
1986.

A. George and J. W-H. Liu, Compuier Solution of
Large Sparse Positive Definite Systems, Prentice-Hall,
Englewood Cliffs, 1981.

G. Jacobs, D. Pederson, “An Empirical Analysis of the
Performance of a Multiprocessor-based Circuit Simula-
tor,” Proc. of the Design Automation Conference, Las
Vegas, Nevada, June 1986.

L. W. Nagel, “SPICE2: A Computer Program to Sim-
ulate Semiconductor Circuits,” Electronics Research
Lab Report, ERL M520, Univ. of Calif., Berkeley, May
1975.

R. Saleh and A. R. Newton, “An Event-Driven
Relaxation-Based Multirate Integration Scheme for
Circuit Simulation,” Proc. Int. Symp. on Circuits and
Systems, Philadelphia, Pennsylvannia, May 1987.

[VAR] R. Varga, Matriz Iterative Analysis, Prentice Hall, En-
glewood Cliffs, New Jersey, 1962.

[WEB] D. M. Webber, A. Sangiovanni-Vincentelli, “Cir-
cuit Simulation on the Connection Machine,” 24k
ACM/IEEE Design Automation Conf., pp. 108-113,
June 1987.

[WEE] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D.
Mehta, H. Quasemzadeh, T. R. Scott, “Algorithms for
ASTAP - A Network Analysis Program,” IEEE Trans.
on Circuit Theory, pp. 628-634, Nov. 1973.

[WHI] J. K. White, A. Sangiovanni-Vincentelli, Relazation
Techniques for the Simulation of VLSI Circuils,
Kluwer Pub., Boston, 1986.

[WIN]} O. Wing, J. W. Huang, “A Computation Model of Par-
allel Solution of Linear Equations,” IEEE Trans. on
Computers, pp. 632-638, July 1980.

[GEO]

[JAC)

[NAG]

[SAL]

