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Abstract

In this paper a fast algorithm for computing the capac-
itance of a complicated 3-D geometry of ideal conduc-
tors in a uniform dielectric is described. The method
is an acceleration of the standard integral equation ap-
proach for multiconductor capacitance extraction. These
integral equation methods are slow because they lead to
dense matrix problems which are typically solved with
some form of Gaussian elimination. This implies the
computation grows like n®, where n is the number of
tiles needed to accuracy discretize the conductor sur-
face charges. In this paper we present a preconditioned
conjugate-gradient iterative algorithm with a multipole
approximation to compute the iterates. This reduces the
complexity so that accurate multiconductor capacitance
calculations grow as nm where m is the number of con-
ductors.

1  Introduction

In the design of high performance integrated cir-
cuits, there are many cases where accurate estimates
of the capacitances of complicated three dimensional
structures are important for determining final circuit
speeds or functionality. Two examples are complicated
three-dimensional dynamic memory cells and the three-
dimensional chip carriers commonly used in mainframe
computers. In these problems, capacitance extraction is
made tractable by assuming the conductors are ideal, and
are embedded in a piecewise-constant dielectric medium.
Then to compute the capacitances, Laplace’s equation is
solved numerically over the charge free region with the
conductors providing boundary conditions.

"Although there are a variety of numerical methods that
can be used to solve Laplace’s equation, the technique
that is typically used in three dimensions is the inte-
gral equation approach[ruehli73,rao84,ning88). In this
approach, the surfaces or edges of all the conductors are
broken into small tiles. It is assumed that on each tile ¢, a
charge, ¢;, is uniformly or linearly distributed. The po-

tential on each tile is then computed by summing the
contributions to the potential from all the tiles using
Laplace’s equation Green’s functions. In this way a ma-
trix of potential coefficients, P, relating the set of = tile
potentials and the set of n tile charges is constructed,
and must be solved to compute capacitances. Typically,
Guassian elimination or Cholesky factorization is used to
solve the equation, in which case the number of opera-
tions is order n3. Clearly, this approach becomes compu-
tationally intractable if the number of unknowns exceeds
several hundred, and this limits the size of the problem
that can be analyzed to one with a few conductors.”
In this paper we present an algorithm for com-
puting capacitance whose complexity grows as mn,
where m is the number of conductors. Our algorithm,
which is really the pasting together of three well-known
algorithms[rohklin86}, is presented in three sections. To
begin, in the next section one of the standard integral
equation approaches is briefly described, and it is shown
that the algorithm requires the solution of an n x n
dense symmetric matrix. Then, in Section 3, a precondi-
tioned conjugate-gradient algorithm is described, and it
is shown to reduce the complexity of the calculation to
order mn2. In Section 4, it is shown that the conjugate-
gradient algorithm only requires the evaluation of a po-
tential field from a charge distribution, and this can be
computed in order n time using a multipole algorithm.
In Section 5, some preliminary experimental results are
given, and we present our conclusions and acknowledg-
ments. ' \

2 The Integral Equation Approach

Consider a system of m ideal conductors embedded in a
uniform lossless dielectric medium. For such a system,
the relation between the m conductor potentials, denoted
by p € £™, and the m total charges on each conductor,
denoted by § € R™, is given by § = Cp, where C € R™*™
is referred to as the capacitance matrix. The i** column
of C can be calculated by solving for the total charges
on each of the conductors when the i conductor is at
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unit potential, and all the other conductors are at zero
potential. Then the charge on conductor j, gj, is equal
to Cj;.

There are a variety of approaches for numerlcally
computing the conductor charges given a set of con-
ductor potentials, and we will focus on integral equa-
tion methods{ruehli73,rao84,ning88}, as they are efficient
when applied to problems with ideal conductors in a uni-
form dielectric medium. The method exploits the fact
that the charge is restricted to the surface of the con-
ductors, and rather than discretizing all of free space,
just the surface charge on the conductors is discretized.
The potential is related to the discretized surface charge
through integrals of a Green’s functions.

Let the surfaces of a collection of m conductors in free
space be discretized into a total of n tiles. The potential
at the center of the i** tile would be the sum of the con-
tributions to the potential from the charge distribution
on every tile. That is,
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where 7; is the position of the center of tile ¢, = is the
position on the surface of tile j, p; is the potential at
#i, q;(r) is the position dependent charge density on the
surface of the j** tile, and | | denotes the Euclidian
length of r. Note that the integral in (1) is the free
space Green’s function multiplied by the charge density,
integrated over the surface of the j** tile, and that as the
distance between tile ¢ and tile § becomes large compared
to the surface area of tile j, the integral reduces to I_Lﬂ
where ¢; is the total charge on tile j.

There are several approaches to simplifying (1), the
simplest is the “point-matching” approximation in which
it is assumed that the charge is distributed uniformly on
the tile surface[ra,o84]. In that case (1) can be simplified

to
pi= E % /t
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where g; is the total charge on tile j, and a; is the surface
area of tile ;. When applied to the collection of n tiles,
a dense linear system results,

Pg=p _ (3)
where P € R"%%; ¢, p€ R" and

Fij = Pj; =

1 1/ 1
=] ——=da +
2 |a; Juite; | 7~ T4 |

Note that g and p are the vectors of tile charges and po-
tentials rather than the conductor charge and potential
vectors, § and p mentioned above. In (4), the potential
coefficients, P;j, have been “symmetrized” by averaging

da} .(4)

tile; | T~ T; l

for several reasons: the physical system is symmetric,
the symmetrized equations have been shown to produce
more accurate results for a given discretization, and a
symmetric matrix problem is more easily solved. The
dense linear system of (3) can be solved, typically by
some form of symmetric Gaussian elimination, to com-
pute tile charges from a given set of tile potentials. To
compute the j%* column of the capacitance matrix, (3)
must be solved for ¢, given a p vector whose entries p;
are set equal to one if tile 4 is on the j* h conductor, and
zero otherwise. Then the ij®* term of the capacitance
matrix is computed by summing all the charges on the

t ; =
3t conductor, i.e. Cij = Lkeconductor; I+

3 Using Preconditioned Conjugate-
Gradient

In order to solve for a complete m X m capacitance ma-
trix, the n X n symmetric matrix of potential coefﬁcxents,
P, must be factored once, usually into P = LLT, and
this requires order n3 operations. Then, as thele are
m conductors, the factored system must solved m times
with m different right-hand sides, and this requires or-
der mn? operations. Since n is the total number of tiles
into which the conductor surfaces are cut, m is neces-
sarily much less than n. Therefore, the n® factorization
dominates for large problems.

This suggests that iterative methods might be more ef-
ficient than direct factorization for solving the m charge
distribution problems. In particular, as the matrix is
symmetric and positive definite, the conjugate-gradient
(CG) algorithm is a natural choice[golub83]. Unfortu-
nately, the CG algorithm can converge slowly when ap-
plied to the matrix of potential coefficients, particularly
when the problem contains widely separated pairs of very
closely spaced tiles. To accelerate the convergence of CG,
an attempt is made to factor most of the part of the
problem associated with the closely spaced tiles directly.
To accomplish this, the smallest cube containing the en--
tire problem is uniformly divided into a large number of
cubes, typically into as close to i cubes as possible. The
piece of the potential coefficient matrix associated with
the tile interactions inside a cube is then factored directly
and used as a preconditioner to accelerate the CG algo-
rithm. If the p and g vector in (3) are reordered so that
tiles contained irr a given cube are ordered contiguously,
the potential coefficients representing the interaction be-
tween tiles in a given cube will be blocks on the diagonal
of P. Thatis, P = Piniracube + Pintercube where Pmtracube
is a block diagonal matrix.

The CG capacitance extraction algorithm with the
P;ntracube preconditioner (PCG) is as follows:
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Algorithm 1: Preconditioned CG capacitance
extraction algorithm

Setup Phase. »
" Divide all the conductors into a total of n tiles.
Divide the tiles into cubes, and reorder to
make Pjpracute block diagonal..
Compute the Potential Coefficient Matrix.
fori=1toi=n
forj=1toj=n
Compute P;; from (4).
Factor Pintracube-
Loop Through all the Conductors.
fork=1tom .
if tile  is on conductor k, set p; = 1.
else p; = 0.
Use PCG to solve Pg = p.
forl=1tom Cyu = Ekeconductor; qk.

Preconditioned CG (PCG).

The Setup.

r=p,¢=0.
Conjugate-Gradient Loop.
Repeat

Solve Pintracube? = T+
if the first iteration § = 0.
else B = 277 /(271)prev-

cz=2z+ Pz
y= Pz.
ZTT
X= Tz
g=q+ oz,
T=7r-ay.

Until Converged

4 Acceleration with a Multipole Al-
gorithm

As can be seen from examining the computation in Algo-
rithm 1, m problems must be solved iteratively, and the
major cost is computing the matrix P, and in each itera-
tion forming the product Pz, both of which are order n?.
This implies that computing the capacitance matrix with
Algorithm 1 is order mn?, and may not be much more
efficient than direct factorization if the ratio of tiles to
conductors is low.

An approach for reducing the cost of forming P and
computirig Pz in the CG algorithm can be derived by
recalling that if 2 is thought of as a charge distribution,
Pz is the potential due to that charge distribution. To
see how this helps simplify the computation Pz, consider
two widely separated cubes, each with k tiles. Comput-
ing the contributions to the potentials at the center of
each of the tiles in the first cube due to the k tile charges
in the second cube from (4) requires k? calculations. If
all the charges in the second cube are positive, then the k

potential contributions to the first cube can be computed
approximately in k operations. This is done by assuming
the charges in the second cube contribute to potential in
the first cube like a point charge equal to the sum of the
charges in the second cube located at a “center of mass”,
Note that the accuracy of the approximation improves
as the separation between cubes increases.- =
There are a collection of algorithms based on
the above idea, often referred to as multipole
algorithms(rohklin86,katzenelson88,zhao87]. The details
of the multipole algorithm we used are well described
in[greengard87], and only a very basic outline will be
given here. In general, the potential, ¥, due to a cube
of point charges at a location outside the radius of the
cube is given by the multipole expansion,
' o ‘m M"‘
¢(1‘,0, ¢) = Z Z FL%I-Y’:"(H, ¢) (5)

n=0m=-n

where 7, 6 and ¢ are the spherical coordinates of the eval-
uation location, Y;"(8, ¢) is the spherical harmonic, and
M™ is the multipole coefficient, which can be computed
from the charge in the cube from

k :
M= gty ™M(eB) (6)

i=1

where p;, @;, and f; are the spherical coordinates of the
ith charge. If the evaluation location is well outside the
cube, then the potential can be accurately computed us-
ing just a few terms of the multipole expansion.

Consider a collection of cubes containing charges and
one cube, well separated from the others, containing sev-
eral locations at which the potential must be evaluated.
1t is possible to combine all the multipole expansions for
the cubes containing charges into a single local expan-
sion from which the potential at the evaluation points in
the cube can be computed quickly. The local expansion
is given by ‘

Wroe) =3 3 LIYr@Hn ()

n=0m=-n

where 7, 6 and ¢ are the spherical coordinates of the
evaluation location, and L™ are the local expansion co-
efficients, which are computed from the combination of
multipole expansions for the cubes containing charges.
Good accuracy can be achieved with a few terms of the
local expansion. .
Truncated multipole and local expansions can be used
to compute n potentials at n evaluation points in order
n operations, provided the charges and evaluation points
are reasonably separated. To ensure adequate separation
and avoid excess calculation, careful hierarchical shifting
and combining of both the multipole and local expan-
sions is necessary,-as is well described in [greengard87).
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Figure 1: Bus Structure Example with Six Conductors

2 Cond. | 4 Cond. | 6 Cond.
tiles 216 720 1512
cubes 64 64 64
direct time 67 2520 20160
PCG time 65 653 2613
PCG iters 7 10 12
MPCG iters . 8 11 14
MPCG rel. err. | 0.002 0.001 0.002

Table 1: Comparison of Extraction Methods

With the computation organized in this manner, the mul-
tipole algorithm can be used to compute most of Pz in
Algorithm 1, except the part due to interactions between
tiles in a given cube, and the tiles of each cube’s nearest
neighbors. This implies that in Algorithm 1, if the mul-
tipole algorithm is used to compute Pz, most of P need
not be formed explicitly. Note also that the part that
must be computed explicitly includes P;,irqcute, there-
fore the multipole accelerated PCG algorithm can still
use Pintracube a8 a preconditioner. Finally, note that us-
ing the multipole algorithm to compute Pz implies that
both n? steps of Algorithm 1, forming all of P and com-
puting Pz, can be removed.

5 Results and Conclusions

The multipole accelerated PCG algorithm was imple-
mented and tested on a simple bus structure (Figure 1),
with 2, 4, and 6 conductors. In Table 1 we report the
total number of tiles resulting from the conductor sur-
face discretization, the number of cubes into which space
was divided, the time to compute capacitance using di-
rect factorization and PCG, the number of iterations to
achieve convergence with PCG and multipole accelerated
PCG (MPCGQ), and the relative error introduced by the
multipole approximation.

. Much additional work is under way to improve the ef-
ficiency of our MPCG-based capacitance extraction pro-
gram, and CPU time comparisons for an efficient imple-

mentation will be presented at the conference.  Future
research includes extending the approach to piecewise-
constant dielectrics and problems with ground planes.
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