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Abstract

In this paper we present experimental results demonstrat-
ing the effectiveness of waveform relaxation (WR) for solving
the large, sparsely-connected algebraic and differential system
generated by standard spatial discretization of the 2-D time-
dependent semiconductor device equations. The experiments

- demonstrate that WR converges in a uniform manner, and
that there is typically some multirate behavior in a device that
the WR algorithm can exploit. Speed and accuracy compar-
isons are made between standard direct methods, red/black
Gauss-Seidel WR, and red/black overrelaxed WR. For our ex-
periments, calculated terminal currents matched well bétween
the methods, and overrelaxed WR was up to a factor of 3
faster than direct methods.

1 Introduction

The accuracy of a circuit simulator is limited by the inaccu-
racies of the device models it employs. For most applications,
the analytic MOS models used in programs like SPICE [4] ac-
curately reflect the behavior of terminal currents and charges,
but in some cases, these models are inadequate. For exam-
ple, charge distribution must be computed accurately when
simulating MOS comparator circuits or switched-capacitor fil-
ters. In addition, distributed effects in power MOS devices
cannot be ignored when considering their efficiency as tran-
sistor switches. A more accurate, but computationally expen-
sive, way to simulate these difficult circuits is to use a mixed
circuit/device simulator such as CODECS [3). In a mixed cir-
cuit/device simulator, circuit behavior is computed by solving
the Poisson equation and the drift-diffusion partial differen-
tial equations for each device, while simultaneously solving
the equations governing circuit operation. This is like incor-
porating a semiconductor device simulator such as PISCES [5]
or MINIMOS [8] into a circuit simulator.

The enormous computational expense and the growing im-
portance of mixed circuit/device simulation, as well as the
current trend towards parallel computation, suggest that spe-
cialized parallel algorithms be developed for transient simula-
tion of MOS devices that need only be effective in the device’s
standard operating region. For this reason, we are investigat-
ing accelerating transient device simulation with a waveform
relaxation (WR) algorithm. WR. has several ad vantages that
may make it more effective than standard direct methods on
parallel processors: WR is an iterative method and therefore
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avoids solving large sparse matrices directly, different sections
of a device can be simulated with different timesteps, and fi-
nally, it is well-known that the decomposed fashion in which
the WR. equations are solved is suitable for parallel implemen-
tations [10] [9].

We start, in the next section, by describing the drift-
diffusion device simulation equations, and then show that
standard spatial discretization techniques convert these equa-
tions into a large, sparsely-connected system of algebraic and
differential equations. Section 3 is a description of how WR
can be applied to the spatially-discretized device equations. In
Section 4 we present experimental results from our 2-D MOS
device simulation program and compare WR, overrelaxed WR,

-and direct solution methods. Finally, in Section § we present

conclusions and acknowledgements.

2 Device Simulation

A device is assumed to be governed by the Poisson equation,
and the electron and hole continuity equations:
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where u is the normalized electrostatic potential, n and p are
the electron and hole concentrations, J,, and J, are the elec-
tron and hole current densities, Np and N4 are the donor and
acceptor concentrations, R is the net generation and recombi-
nation rate, ¢ is the magnitude of electronic charge, and ¢ is
the dielectric permittivity [1], [8).

The current densities J, and J, are given by the drift-
diffusion approximations:

Jo = —¢qDn(nVu— Vn)
I =4D, (P Vu+ Vp)

where D,, and D, are the diffusion coefficients. In these equa-
tions, the diffusion constants are assumed to be related to
the electron and hole mobilities by the Einstein relations. J,
and J, are typically eliminated from the continuity equations
using the drift-diffusion approximations, leaving a differential-
algebraic system of three equations in three unknowns, u, n,
and p.
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Given a rectangular mesh that covers a two-dimensional
slice of a MOSFET, a common approach to spatially discretiz-
ing the device equations is to use a finite-difference formula to
discretize the Poisson equation, and an exponentially-fit finite-
difference formula to discretize the continuity equations (the
Scharfetter-Gummel method) [1] [8]. The discretized Poisson
equation at each mesh node 4, fi(ui, ni,p;, uj) =0, is:
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where the sum is taken over the four nodes adjacent to i
(north, south, east, and west), d;j is the distance from node
i to node j, and L;; is the length of the perpendicular bi-
sector of the edge between nodes i and j. The discretized
electron continuity equation with the drift-diffusion approxi-
mation, f(dn;/dt, w;,n;,uj,n;) =0, is:
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where B(u) = u/(e* — 1) is the Bernoulli function, used
to exponentially fit potential variation to electron concen-
tration variation. The discretized hole continuity equation,
f3(dpl'/dt) Ui, Piy uj)pj) =0, is similar. . ~

If there are N mesh nodes, then the result of this spatial dis-
cretization is a sparse differential-algebraic system of 3N equa-
tions in as many unknowns. The Poisson equations generate
N algebraic constraints on the 2N nonlinear ordinary differ-
ential equations formed from the electron and hole continuity
equations. At least one thousand mesh nodes are typically
needed to accurately represent a 2-D slice of a MOS transis-
tor, so that simulating a circuit where even a few transistors
are treated by numerically solving the device equations leads
to an enormous coupled system of algebraic and differential
equations.

3 WR for Device Simulation

The standard approach used to solve the differential-algebraic
system generated by spatial discretization of the device equa-
tions is to discretize the d/dt terms with a low order inte-
gration method such as the second-order backward difference
formula. The result is a sequence of nonlinear algebraic sys-
tems in 3N unknowns, each of which can be solved with some
variant of Newton’s method and/or relaxation [3]. Another
approach is to apply relaxation directly to the differential-
algebraic equation system with a WR. algorithm [2], such as
that in Figure 1.

A WR algorithm reduces the problem of simultaneously
solving the 2N diflerential equations and N algebraic equa-
tions to one of iteratively solving 3N independent equations.
At each mesh node i, the equations governing the u;(t), n;(1),
and p;(t) waveforms can be solved with a numerical integra-
tion method such as the second-order backward difference for-
mula. The inherent advantage of the WR approach is that the
differential equations are solved independently, and therefore
different sets of timesteps can be used at different mesh nodes

guess uo,n",po waveforms at all nodes

for k=0,1,2,... until converged {
for each node i {
solve for uf"’,n?l,p?“ waveforms:

fl(“qu, nf+l)p:f+lru?) = 0
fg(dn:-‘“/dt, uf“, nft u_';, n;‘) = 0
Sa(dpit/d, ufP, pF b ph) = 0

Figure 1: The point Gauss Jacobi WR algorithm.

to calculate the time evolution of u, n, and p. Therefore, if the
device exhibits multirate behavior, WR. can be very efficient
provided it converges rapidly enough.

4 2-D MOS Transistor Experiments

In this section we present results from experiments with our
2-D WR-based transient device simulation program. The pro-
gram computes transient behavior using either block WR or
direct methods. For either solution technique, the differential-
algebraic equations are solved using the second-order back-
‘ward difference formula with a standard local truncation error
timestep control scheme, the implicit algebraic systems gener-
ated by the backward difference formula are solved with New-
ton’s method [1}, and the linear equation systems generated
by Newton’s method are solved with sparse Gaussian elimina-
tion. Convergence is determined by testing for convergence of
the potential and electron concentrations, as well as the con-
vergence of the terminal currents. The simulator is written
in C, and uses the Berkeley Sparse 1.3 sparse matrix solver
written by K. Kundert. All experiments were run on a Sun-4
260.

In the experiments below, the device simulated is an n chan-
nel MOSFET with a 2.2 um channel length, an oxide thickness
of 50nm, a drain and source p* doping of N, = 102cm=3, an
abrupt junction depth of 0.2 um, a substrate doping of N, =
2.5 x 10'® ¢em~3, and a channel implant of N, = 106 ¢m=3
that extends to a depth of 50 nm. Dirichlet boundary condi-
tions were imposed by a gate contact and by chmic contacts at
the drain, the source, and along the bottom of the substrate.
Neumann reflecting boundary conditions were imposed along
the left and right edges of the region.

In order to test both the low and high current case, the gate
contact was held at 5 v, the source at O v, the substrate at Ov,
and the drain voltage was raised linearly from 0 v to 5 v over
3 ns, and then fixed at 5v. The entire simulation interval was
30 ns. The experimental setup is illustrated in Figure 2.

The MOS device was spatially discretized on three different
tensor product meshes (19x31, 23x31, and 23x33). In all three
meshes, the grid lines were placed closer together at points
where u, n, and p were expected to exhibit rapid spatial vari-
ation. In the largest problem, the 23x33 mesh (23 rows and 33
columns), there were 586 silicon nodes and 107 oxide nodes,
so that this problem contained 1865 sparsely coupled algebraic
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Figure 2: The transient simulation setup.

and differential equations in as many unknowns.

To solve with block WR, the mesh was broken into blocks
defined by its vertical lines. In order to obtain accurate drain
current calculations, the two vertical lines next to the drain
were always blocked together. The equations governing nodes
in the same block were solved simultaneously using Newton’s
method and sparse Gaussian elimination. The blocks were
processed in red/black order as this maximizes parallelizabil-
ity.

4.1 Uniformity of Convergence

Previous theoretical results guarantee the convergence of the
WR algorithm for the device simulation problem, and they
suggest that the WR algorithm will converge in such a way
that on each WR iteration, all the timepoints in a waveform
will move closer to the correct solution [2], [6]. This unifor-
mity of convergence is essential to WR efficiency. In order to
demonstrate that it occurs in practice (or at least in our ex-
amples), we compare the number of WR iterations required to
solve the 19x31 mesh over the 30 ns simulation interval (106
iterations) to the number of iterations required to solve the
same mesh over just the first 1 ns of the 30 ns interval (92
iterations). The number of iterations required is about the
same, indicating that WR is converging uniformly over the
entire 30 ns simulation interval.

That the WR algorithm converges in a uniform manner sug-
gests that it will be possible to accelerate WR. convergence
with overrelaxation. Like successive overrelaxation (SOR) for
algebraic problems, waveform SOR (WSOR) involves modify-
ing the waveform iterates by pushing them further (or not as
far) in the iteration direction by some parameter w € [0,2).
The impact of SOR on WR efficiency is discussed in a later
section.

4.2 Multirate Behavior

Figure 3 illustrates the number of timepoints required per
block to solve the 23x33 mesh with WR. Different blocks re-
quired different numbers of timesteps, indicating that in prac-
tice some multirate behavior can be exploited by WR. It is
interesting to note that different nodes changed at different
rates, not so much because the electron and hole concentra-
tions changed at different times, but because they changed by
different orders of magnitude (mullimagnitude behavior).
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Figure 3: Multirate behavior in the k23x33 mesh.

4.3 Comparisons to Direct Solution

To solve with WSOR,, we proceed as with WR and after twenty
WR iterations over all blocks, we accelerate convergence by
setting the overrelaxation factor to some fixed valuel < w < 2.
In the examples shown here, w = 1.5.

number of | CPU sec | CPU sec | CPU sec
device | unknowns | direct | WR (GS) | WSOR
k19x31 1379 3324.31 5042.42 2791.50
k23x31 1751 6449.68 6218.78 3335.57
k23x33 1865 8726.60 6712.23 3767.99

Table 1: Comparison of CPU times for WR, WSOR and direct
solution.

The results show that WR. is competitive with direct so-
lution, and that WSOR is faster. We found in general that
the red/black ordering of the blocks didn’t worsen the WR or
WSOR convergence rate compared to natural ordering. Be-
cause we used red/black ordering, and there were more than
30 blocks, a further factor of 15 speedup could be obtained by
implementing the algorithm on a parallel machine.

As Figure 4 illustrates for the drain current, there was no
significant difference in terminal current calculations between
WR and direct solution over the full range from zero current
to the maximum operating current. The accuracy can be im-
proved further by tightening the WR convergence tolerances.
As mentioned above, to obtain this accuracy, it was necessary
to block the pair of vertical lines next to the drain together.
This insured that the potentials at both ends of the edges
of maximal current flow were solved at the same timepoints,
eliminating any interpolation error.

Figure 5 shows the electron concentrations calculated by
WR, at the silicon-oxide interface in the channel of the 19x31
mesh.
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Figure 4: Drain current in the 19x31 mesh for direct and WR.
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Figure 5: Electron concentrations in the channel of the 19x31
mesh calculated by WR.

5 Conclusions and Acknowledge-
ments

In this paper, applying WR to 2-D MOS device transient simu-
lation is investigated. These preliminary experimental results
show that WR converges in a fairly uniform manner, that some
multirate behavior can be exploited, and that an appropriately
blocked and overrelaxed WR method can be faster by almost
a factor of 3 than direct methods. In addition, since red/black
Gauss-Seidel was used, the algorithm has substantial easily-
exploited parallelism. Also, the results presented are for rela-
tively small problems, with less than 2000 unknowns, and we
expect that larger problems, such as more accurate 2-D sim-
ulation or 3-D simulation, will make the WR algorithms even
more eflective.

There are a variety of techniques that can futher improve
WR performance. We are currently working on refining the
timesteps with iterations, and using a single waveform-Newton
iteration to solve the nonlinear WR equations. With these
additional techniques, WR promises to be a fast and easily
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parallelizable technique for transient device simulation, a good
platform upon which to build a mixed circuit/device simulator.
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