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Abstract

In this paper we present our results on the stability and accu-
racy properties of exponentially-fit integration algorithms, and
demonstrate these properties on some test examples. We con-
sider the multivariate test problem x= —Ax where A € ®**"
and is assumed to be irreducibly diagonally-dominant with
positive diagonals, as this models the equations resulting from
the way MOS circuits are treated in timing simulation pro-
grams. It is shown that for these problems, the CINNA-
MON exponentially-fit algorithm is A-stable, and an example
is given where the algorithm in XPSim is unstable. A semi-
implicit version of the XPSim algorithm is then described, and
it is shown that this semi-implicit algorithm is A-stable. Ex-
amination of examples demonstrate that neither the stabilized
XPSim algorithm nor the CINNAMON algorithm produces
satisfactory results for very large timesteps. The effect of or-
dering on the accuracy and stability of the integration meth-
ods is also examined, and it is shown that ordering always en-
hances accuracy, though not significantly for large timesteps,
and that the XPSim algorithm can be made more stable with
a carefully chosen ordering.

1 Introduction

Designers of MOS digital circuits often use transistor-level sim-
ulation programs that are very fast but have limited accuracy
when compared to circuit simulation programs like SPICE [1].
This reduction in computation time allows for entire designs,
or at least whole critical paths, to be simulated, though only
a rough idea of circuit performance can be derived. Programs
of this type are referred to as timing simulators, and typically
are simplified circuit simulators with loosely controlled accu-
racy. Specifically, these programs use nodal analysis to derive
a system of differential equations that describes the circuit,
and then by exploiting the assumption that each node has a
capacitor to ground, can use simplified multistep integration
algorithms (2,3]. '

Recently, exponentially-fit integration methods [4] have
been reinvestigated in an attempt to improve the performance
and accuracy of timing simulation, as in the programs CIN-
NAMON and XPSim [5,6]. For the purposes of this paper, we
define the first-order exponentially-fit integration algorithm as

2(tas1) = 2(tn) + (z(00) — z(ta))(1— e~ %) (1)

where the z(o0) and 7 depend on the precise exponentially-fit
integration method being used. The interpretation of these
parameters is that z(oo) is an estimate of the equilibrium
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or steady-state value of z, and 7 is an estimate of the time-
constant of the approach to steady-state.

Exponentially-fit methods are appealing in that when ap-
plied to numerically integrating the scalar linear differential
equation z +dr = b, d,b € R, with an appropriate choice
of 7 and z(00), the exact solution is produced, no matter
how large the timestep. It is conjectured that this accu-
racy for scalar problems has the practical consequence that
exponentially-fit integration methods retain reasonable accu-
racy on general problems for much larger timesteps than stan-
dard multistep methods. The theoretical justification for this
large timestep behavior is limited however.

In this paper we present our results on the properties
of exponentially-fit integration algorithms, and demonstrate
these properties on some test examples. In the next section
we show that consistency enforces a relation between z{co)
and 7, and that the methods used in both the programs CIN-
NAMON and XPSim can be derived from Eqn. (1) using dif-
ferent values of z{co) and 7. In Section 3, we describe the
large timestep stability of the two exponentially-fit methods
applied to a matrix test problem

x= —Ax x(0)=x0#0 (2)
where A € R"*". In our case, A is assumed to be irreducibly
diagonally-dominant {7] with positive diagonals, as this mod-
els the equations resulting from the way MOS circuits are
treated in timing simulation programs. It is shown that for
these problems the CINNAMON exponentially-fit algorithm
is A-stable, and an example is given where the algorithm in
XPSim is unstable. A semi-implicit version of the XPsim algo-
rithm is then described, and it is shown that this semi-implicit
algorithm is A-stable. The example is used to also demon-
strate that neither method produces satisfactory results for
very large timesteps. In section 4, the effect of ordering on
the accuracy and stability of the integration methods is exam-
ined. It is shown that ordering always enhances accuracy and
that the XPSim algorithm can be stabilized with a carefully
chosen ordering. Conclusions and acknowledgements are given
in Section 5.

2 Explicit Exponential Fitting

Not all values of the z(o0) and 7 parameters introduced in
Eqn. (1) produce consistent integration methods, where by
consistency we mean that the error introduced in one timestep,
h, is O(h?). Using a Taylor series expansion of the exact solu-
tion about z(t,), we get that the exact solution for time ¢, 4,
is given by

28 (tns1) = 2(tn) + b 2 (ta) + O(K?)
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whereas the approximate solution computed from (1) assum-
ing no error on the previous timepoint yields

z(00) — z(ty)

Z(tas1) = 2(tn) + h +O(h?).

Therefore, 2(00) and T must satisfy the condition

Hoo) =) _g (4, 3)

T

Using the relation in (3) we can rewrite (1) as

2(tns1) = 2(ta) + 7(1— €™ ) 2 (tn) (4)
which defines a family of consistent one-step first-order explicit
exponentially fitted formulas parameterized by .

Also note that when h — 0

(5)

Q1 —e"%) ~

At

which implies that formula (4) reduces to the well known
forward-Euler integration algorithm and therefore inherits its
convergence properties. That is, when numerically integrating
on a finite interval [0, T)

' E -

fim max [|z(ta) — 27 (ta)ll = 0 (6)
where ty = T.

For a system of N ordinary differential equations, (4) can
be generalized as,

X(ta41) = X(tn) + DI = e="D) % (t,) (7)

where, D is a N x N diagonal matrix, with d; = %.

Both of the approaches followed in the circuit simulators
CINNAMON and XPSim can be reduced to the above for-
mulation. It is in the choice of the fitting matrix D that the
algorithms differ significantly. We will illustrate the difference
between the two approaches for the test problem in Eqn. (2).
In CINNAMON, a simple approach is used: the 7 is selected
from the diagonal term of the matrix as

1
= (®
and the x(co) is set according to the consistency relation-
ship (3) to be:

2i(00) = 2i(ta) + 7 i (t) (9

There is a simple circuit interpretation of the CINNAMON
algorithm. Each node in the circuit is updated to a new time-
point by computing the exact solution to that node, given all
the other nodes are treated as fixed voltage sources at the
previous timestep.

In the case of digital logic circuitry, the steady-state value is
often known, typically being equal to the power supply volt-
age or ground. This is exploited in the XPSim algorithm,
which selects for x(o0) the correct steady-state value. For our
problem, x(c0) = 0, and by consistency

= i oc: = zi(tn) (10)
z (tn)

"Clearly, the XPSim algorithm can not be used when the
solution passes through zero. In fact, in that case XPSim
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is not even consistent, as the method is positive invariant.
That is, the XPSim algorithm can only produce a positive
z(tny1) from a positive z(¢,). In our case this difficulty can
be mostly ignored if the initial condition is assumed to be a
positive vector. Then, if the problem is as given in Eqn. (2),
where A is strictly or irreducibly diagonally dominant, the
exact solution, and the solution computed by XPSim, will be
positive for all time [8].

3 Large Timestep Properties

Because exponential-fitting methods are tuned to scalar prob-
lems, they obviously are going to perform well when A of
Eqn. (2) is strongly diagonally dominant, but they degrade
surprisingly quickly when A is only weakly diagonally dom-
inant. Consider the example in Figure 1, a tightly coupled
two-node circuit where the initial condition at each node is 1
volt.
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Figure 1: Test Circuit

A comparison of the computed results simulating this cir-
cuit using the backward-Euler(BE), the XPSim(XP), and the
CINNAMON(CIN) algorithms (another algorithm, (IP) also
in this figure, is described below) with a 0.1 second timestep
is plotted in Fig. 2. As is clear from the picture, all algorithms
produce roughly the the same accurate results.
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Figure 2: v;(t) for h =0.1""

In Fig. 3, the results from simulating the same example,
but using a 1.1 second timestep, are plotted. For this case,
disappointing results are achieved for the CINNAMON (CIN)
and XPSim (XP) methods when compared to the standard
backward-Euler (BE) algorithm. The solution computed with
XPSim is unstable and. the solution computed with CINNA-
MON is inaccurate in that it decays too slowly.

If the timestep is set to 10 seconds, as in Fig. 4, the result
from the XPSim algorithm becomes too unstable to plot, and
the result from the CINNAMON algorithm gets “stuck”, that
is, it decays much more slowly than the exact solution (the
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Figure 3: v;(t) for h = 1.1

algorithms (SI), (IP), also in these figures, are described be-
low). This property of the CINNAMON algorithm, that of
getting “stuck”, is particularly insidious as the slow changing
node may be misinterpreted as having achieved equilibrium.
This will confuse an event-driven algorithm, and may lead to
significant errors.
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Figure 4: vy (t) for h = 10

It is possible to stabilize the XPSim algorithm for diagonally
dominant problems by making the computation semi-implicit.
When applied to (2), a semi-implicit version of XPSim is

aiiZi(tnt1) + ;4 9ijTi(tn)
) 0y (1)

which we denote as IPSim. Note the method is not implicit
with respect to the denominator term in the exponential, as
this does not enhance stability and makes for a harder non-
linear problem to solve at each step. The IPSim algorithm
is similar to the Gauss-Jacobi semi-implicit algorithm used in
the MOTIS [2] program, which for our test problem yields an
update equation

z,-(t,,.“) = z;(t,.)exp(-—h

Zi(tnt1) = Zeltn) + b |asizi(tngs) + Y 0i25(En)
J#i

(12)

It is known [9] that the Gauss-Jacobi semi-implicit method
is A-stable for A in (2) irreducibly diagonally dominant, and
this result also holds for CINNAMON and IPSim, which we
prove below.
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Theorem 1 When applied to solving Eqn. (2), where A is as-
sumed to be strictly or irreducibly diagonally dominant, CIN-
NAMON is A-stable.

Proof:
The CINNAMON algorithm for updating = can be written
in the form x(t,41) = Mx(t,) where M is given by

M=1-D"!(I-e*D)A. (13)
Note that the individual entries of M are given by
my; = e~ P9 (14)
mij = (1—e M) iy (15)
aii

It follows then that the CINNAMON algorithm is A-stable for
our test problem if and only if the eigenvalues of M are inside
the unit circle for all A > 0. That this is true can be shown
by examining the maximum magnitude row sum of M, as it is

a bound on the magnitude of the elgenvalues of M. Let fi(k)
be defined as

filhy = 2 fmig) = (1 e=Moi) 3 || 4 e=Mes. (16)
i#l aii
Clearly f:(0) =1, fi(h) > 0, and
SO o Lewmq-3i8)y

iF aig

is negative or equal to zero if a;; > 0 and A is irreducibly diag-
onally dominant. Then Yh > 0, fi(h) < 1, where the equality
holds for ¢ such that 7 1|2”'| = 1. Then Yo mil <1,
which bounds the elgenvafues of M to be inside or on the unit
circle. However, the irreducibility property of A guarantees
that any row i of M for which E,. 1 Imij] = 1 is path con-
nected to a row for which EJ <1 Imij| < 1. This insures that

M has no eigenvalues on the unit circle [7,9], and proves the
theorem.

Theorem 2 When applied to solving Eqn. (2), where A is
assumed to be strictly or frreducibly diagonally dominant, and
the initial condition is a posilive vector, IPSim is A-stable.

Proof:

For simplicity, we consider only the case of A strictly di-
agonally dominant, but the proof given here can be extended
easily to the irreducibly diagonally dominant case. In general,
the IPSim update equation for z; can be written as

aiizi(tns1) + Z”g, a;;zj(tn) ).
zi(tn)
(18)

We next show that the IPSim algorithm is A-stable, assuming
that the initial condition is a positive vector, by proving that

(19)

Suppose (19) is not true, that there is some j for which
zj(tns1) 2 maz-'e{x....,u)lts(tn)l- Then,

z.-(t,,+1) = z;(t,,)e:cp( h

mazie(y,... n} |1Zi(tn 1)l < Mazieqy,.. n}lzi(ta)l

aj52Zi(tns1) + D arjze(ta) >0
¥y

(20)

as A is assumed to be strictly diagonally dominant and ay; 0.
If the left-hand side of Eqn. (20) is positive, then by Eqn. (18)




s

|2i(n+1)] must be less than )z;(t,)| which forms the contra-
diction.

The results using the IPSim(IP) and MOTIS(SI) algorithms
to simulate the circuit in Fig. 1 with 1.01 and 10 second
timesteps are plotted in Fig. 3 and Fig. 4 respectively. As the
plots show, the IPSim algorithm is stable, but produces results
not significantly more accurate than the MOTIS or CINNA-
MON algorithms. We make this statement more rigorous in
the following theorem whose proof ends this section.

Theorem 3 If A has positive diagonal entries, then in the
limit as the timesteps becomes large, the CINNAMON, IPSim,
and MOTIS algorithms produce identical results.

Proof:
Summarizing, the update equations for the MOTIS, CIN-
NAMON, and IPSim algorithms are respectively:

Zi(tn41) = zi(ta) + b [a;azs(in+1) + E'aijxj(tn)} » (21)

J#i

agi .
i j

aiZi(tn41) + 3 ;4 @iz (tn)
z.-(t,,)
It is easy to see that in the limit of large h, and given that

ai; is positive for all i, that z(¢,41) for both the MOTIS and
CINNAMON algorithms is

s
ziltn1) = = Y —Lzj(tn). (29)
ge Qi
J#i
The result in Eqn. (24) holds true for the IPSim algorithm
as well. This can be seen by considering that in the limit of
large h, the argument of the exponential in IPSim’s update
equation (23) cannot go to co. Therefore, the term from the
numerator of the exponential’s argument in Eqn. (23)

aii%i(tns1) + E ai; i (tn) (25)
j#i

—e—haii | "
2i(tns1) = 2i(1n) = 1-em ™ [Ea;,-zj(tn)J » (22)

zi(tn41) = 2i(tn Jezp(—h ). (23)

must approach zero as h — oo, |

4 Ordering

In general, it is possible to improve the stability and accu-
racy of explicit or semi-implicit methods by ordering the equa-
tions being solved and using updated values when possible [3].
Specifically, when calculating z;(tn41) the use of the already
computed values of z;(t,4+1) Vj < i will improve the accu-
racy of the solution. This has previously been exploited in
several implementations of the semi-implicit integration algo-
rithm and also in the CINNAMON circuit simulator [10].

Consider as an example the ordered XPSim algorithm, the
update equation for which is

[h Lici 9iTi(tns1) + Xj5; aijz; (in)}
:!:,'(t,,)
where subscript index indicates the ordering.

In Figure 5 we present the plots obtained for the test
circuit, under the same conditions of Figure 3, ie., using

2i(tnt1) = zi(tn) exp
(26)
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a 1.1 second timestep. The waveforms shown correspond
to backward-Euler (BE), CINNAMON (CINo), IPSim (IPo),
XPSim (XPo), and the Gauss-Seidel version of the semi-
implicit algorithm (SIo). For all but backward-Euler, the
waveforms were computed using a random fixed ordering of
the equations. From the figure, and comparing to the results
shown in Figure 3, one can see that ordering improved the
accuracy of all methods, most notably that of XPSim which,
in this problem, is stabilized with this ordering scheme. Also
from the plot we note that with ordering, the solution pro-
duced with CINNAMON becomes quite accurate and also that
the solution produced with IPSim is no better than that ob-
tained with the semi-implicit algorithm, albeit at the expense
of more computation.
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Figure 5: vy(t) for h = 1.1

From these results it is clear that the ordering scheme plays
an important role, and an obvious question is as to whether
some ordering schemes are naturally better than others. Also,
the question of whether ordering does in fact stabilize the XP-
Sim algorithm becomes relevant. In Figure 6 we show the plots
obtained on the test circuit, using a large timestep (h = 10)
by applying a most-changed ordering scheme to both XPSim
and CINNAMON and comparing it to backward-Euler which
is within 10% of the exact solution. The most-changed order-
ing scheme is obtained by calculating at each point in time
which of the nodes will vary the most, and updating that
node first. This scheme seems to stabilize XPSim as far as
the experiments we did, but we note that for a large circuit
it becomes computationally very expensive to compute the
ordering. Also, from the plots we note that the waveform pro-.
duced by ordered-CINNAMON decays more slowly than the
exact solution, although the ordering helps it not getting com-
pletely “stuck”, while the one produced by ordered-XPSim is
much faster than the exact solution.

Clearly from this plot we note that for large timesteps the
accuracy of these methods is poor, but assuming that some or-
dering scheme can be applied that stabilizes X PSim or avoids
CINNAMON getting “stuck”, a timestep control mechanism
can be applied to produce the required accuracy on the com-
puted solution. Of the methods mentioned, CINNAMON
presents the lowest computational complexity together with
the semi-implicit integration algorithm
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Figure 6: v (t) for h = 10
5 Conclusions

In this paper we described some of the theoretical and practi-
cal aspects of using exponential-fitting for MOS digital circuit
timing analysis. None of the methods are more accurate than
backward-Euler for large timesteps and nondiagonal problems,
although the methods may prove to be computationally less
expensive. Of particular concern is the property that the CIN-
NAMON exponential-fitting algorithms tend to get “stuck” for
large timesteps, where as the XPSIM algorithms tend to be un-
stable. Which is preferable will depend on whether efficiency
or reliability is the more important concern.
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