Estimation of Power Dissipation in CMOS Combinational Circuits

Srinivas Devadas
Dept. of EECS
MIT, Cambridge

Abstract

The high transistor density now possible with CMOS inte-
grated circuits has made power dissipation an important de-
sign consideration. However, power dissipation in a logic cir-
cuit is a function of the input vector or vector sequence ap-
plied. This makes accurate estimation of worst-case power
dissipation extremely difficult, since the number of input se-
quences that have to be simulated in order to find the se-
quence that produces the maximum power dissipation is ez-
poneniial in the number of inputs to the circuit. In this pa-
per we show that a simplified model of power dissipation re-
lates maximizing dissipation to maximizing gate output ac-
tivity, appropriately weighted to account for differing load ca-
pacitances. To find the input or input sequence that maxi-
mizes the weighted activity, we give algorithms for transform-
ing the problem to a weighted maz-satisfiability problem, and
then present exact and approximate algorithms for solving
weighted max-satisfiability. That is, transformations are pre-
sented that convert a logic description into a multiple-output
Boolean function of the input vector or vector sequence, where
each output of the Boolean function is associated with a logic
gate output transition. It then follows that an assignment to
the input vector or vector sequence which results in 2 maxi-
mum weighted number of these function’s outputs becoming
1 corresponds to the input vector or vector sequence caus-
ing maximum weighted activity. Algorithms for constructing
the Boolean function for dynamic CMOS as well as for static
CMOS, which take into account dissipation due to glitching,
are presented. Finally, we present efficient exact and approx-
imate methods for solving the so generated weighted max-
satisfiability problem.

1 Introduction

The high transistor density now possible with CMOS inte-
grated circuits has made power dissipation an important de-
sign consideration. However, power dissipation in a logic cir-
cuit is a complex function of the propagation delays, device
parameters, specific topology, and, most importantly, the in-
put vector or vector sequence applied. The last aspect makes
accurate estimation of worst-case power dissipation extremely
difficult, since the number of input sequences that have to be
simulated in order to find the sequence that produces the max-
imum power dissipation is ezponentialin the number of inputs
to the circuit.

Estimating worst-case power dissipation in logic circuits is
becoming an important problem and a similar problem, that of
current estimation, has received recent attention [4]. For some
applications, it is essential that a tight upper bound on the
power dissipation be given. In this paper, we attempt to de-
rive algorithms for ezact and approzimate estimalion of worsi-
case power dissipation in dynamic and static CMOS combina-
tional circuits. Our approach is to use a simple, but reason-
able, model for power dissipation that allows for the use of
boolean and graph manipulation techniques to determine the
input vector set that maximizes dissipation. Then, either the
simplified model or detailed circuit simulation can be used to
accurately determine the dissipation for that input vector set.

Kurt Keutzer
AT&T Bell Laboratories
Murray Hill

Jacob White
Dept. of EECS
MIT, Cambridge

The simplified model of power dissipation relates maximiz-
ing dissipation to maximizing gate output activity, appropri-
ately weighted to account for differing load capacitances. To
find the input or input sequence that maximizes the weighted
activity, we first give algorithms for transforming the prob-
lem to a weighted maz-satisfiability problem. That is, algo-
rithms are presented that convert a logic description into a
multiple-output Boolean function of the input vector or vector
sequence, where each output of the Boolean function is asso-
ciated with a logic gate output transition. It then follows that
an assignment to the input vector or vector sequence which
results in a maximum weighted number of these function’s
outputs becoming 1 corresponds to the input vector or vec-
tor sequence causing maximum weighted activity. Exact and
approximate methods are given for solving the so generated
weighted max-satisfiability problem.

Algorithms for constructing the multiple-output Boolean
function for transitions in dynamic CMOS gates are simplest
because dynamic gates reset at the beginning of every clock
cycle. Determining the input pattern that maximizes power
dissipation in static CMOS circuits is considerably more diffi-
cult, stermming from the fact that activity caused by an input
vector is dependent on the circuit node values just before the
input is applied, and therefore a function of the previous in-
put vector. Thus, we have to search for a {wo-veclor input
sequence that produces maximum power dissipation. Further,
unlike in dynamic circuits, a logic-gate can glitch due to haz-
ards caused by multiple input changes, and therefore can make
multiple transitions. The number of transitions a gate can
make is a function of the arrival times of the transitions at its
inputs, which in turn is dependent on the propagation delays
of the gates on the different paths. We give transformational
algorithms, under various delay models, for static CMOS cir-
cuits that produce a multiple-output Boolean function with
the property mentioned above.

The max-satisfiability problem has been shown to be NP-
complete. We present an exact branch-and-bound algorithm
with associated pruning strategies to solve max-satisfiability.
We show that the problem can be transformed into one of gen-
erating primes for the multiple-output logic function, enabling
the use of efficient prime generation algorithms proposed in
the past. For large circuits, not amenable to these techniques,
we give approximate transformation algorithms, that produce
simpler Boolean functions (for which it is relatively easy to
find a max-satisfying assignment), but do not underestimate
the power dissipation in the circuil.

We begin in the next section by briefly describing the phys-
ical model used for power dissipation. Transformations used
for dynamic CMOS circuits are presented in Section 3. Algo-
rithms for two-level and multi-level static CMOS circuits un-
der a unit-delay and more general delay model are described in
Section 4. Solving max-satisfiability is the subject of Section 5
— we also show how the transformations can be approximated
in this section. Preliminary experimental results are given in
Section 6.

2 A Power Dissipation Model

As mentioned above, CMOS logic circuits only dissipate en-
ergy when their node voltages are changing, and this suggests

19.7.1

IEEE 1990 CUSTOM INTEGRATED CIRCUITS CONFERENCE

CH2860-5/90/0000-0113 © 1990 IEEE

that computing power dissipation involves finding the circuits
transient response. The straight forward approach to deter-
mining the maximum power dissipation of a CMOS combina-
tional network is to simulate the network for all possible sets
of input vectors, and then to multiply the highest energy dis-
sipation so derived by the maximum rate at which the inputs
vectors to the network can change.

As exhaustive simulation of all input patterns is computa-
tionally infeasible for a network with more than a few inputs,
instead we derive a simplified model of the energy dissipation
that can be used, along with with boolean manipulation tech-
niques we discuss in later sections, to efficiently determine the
dissipation maximizing input pattern. Then, detailed simu-
lation can be used to more accurately determine the actual
dissipation. .

A very simple relation between the logical behavior of a
CMOS combinational network and the energy the circuits dis-
sipate can be derived based on three simplifying assumptions:
that the only capacitance in a CMOS logic gate is at the output
node of the gate; that either current is flowing through some
path from Vpp to the output capacitor, or current is flowing
from the output capacitor to ground; and that any change in
a logic gate output voltage is a change from Vpp to ground or
vice-versa. All of these are reasonably accurate assumptions
for well-designed CMOS gates [3], and when combined imply
that the energy dissipateﬁ by a CMOS gate is given by

0.5CVELN (1)

where C is the output capacitance for the gate and N is the
total number of gate output transitions, from either low to
high or high to low.

As can be seen from Eqn. (1), with our simplifying assump-
tions, maximizing the energy dissipated by a CMOS combi-
national network over the possible input vector sets involves
maximizing the weighted sum of logic gate output transitions,
where the weights are given by the gate output capacitances.
We will use this result in later sections to show that finding
the input pattern that maximizes dissipation can be derived
by examining an associated system of boolean equations.

3 Dynamic CMOS Circuits

Finding the inputs to a combinational logic network that max-
imizes the dissipation in one clock cycle is easiest for networks
of dynamic logic gates. This is because at the beginning of
a clock cycle all dynamic gate outputs are forced to either a
logical one or zero, depending only on the type of gate and
not on the inputs. In addition, the gate outputs can change
at most once during the remainder of the clock cycle, based
on the logical function being performed and the inputs only
during that clock cycle.

Interconnections of N-type dynamic gates may suffer from
race conditions that cause erroneous behavior, but correctly-
designed networks will have the property that in one clock
cycle all the gate outputs will be precharged high, and depend-
in% on the input vector, a subset of the gates in the network
will undergo a single falling transition. This property implies
that to find the input patterns which maximize dissipation we
need only find a single input vector to the logical network that
maximizes the weighted sum of falling transitions, where, as
mentioned in Section 2, the weights are determined by the
load capacitances. An analogous statement holds for P-type
dynamic gates.

If all the gates are N-type and all have the same load ca-
pacitances, the problem simplifies to finding the input vector
which maximizes the number of falling transitions. To deter-
mine this vector, we simply find the OF F-set ! for each gate
output node in the network, and find the input vector which

!By OFF-set we mean the subset of all possible input vectors to the
logical network that produce a logical zero at the node of interest.

is in the maximum number of gate output OF F-sets. Prob-
lems of this form are usually referred to as maz-satisfiability
problems. If weights are introduced, to model the varying
load capacitance, we will refer to the resulting problem as a
weighted maz-satisfiability problem. Exact and approximate
methods of finding such an input vector are the subject of
Section 5.

4 Static CMOS Circuits

The problem of determining the maximum dissipation in static
CMOS circuits is more complicated then for dynamic circuits,
mostly because static gate output nodes are not “reset.” This
means that the transitions a static gate undergoes depend not
only on the present input vector, but also on the previous in-
put vector. Thus, we must search for a {wo-veclor sequence
that maximizes dissipation, or equivalently, the weighted sum
of transitions. Note that this is a simplification that over-
estimates the dissipation. Ignored is the fact that in order
to repeat the same two-vector sequence, the network’s inputs
must be returned from the second vector in the sequence to
the first vector, and this reversed sequence may not provide
as much dissipation.

Allowing for this overestimation, we wish to construct a
multiple-output Boolean function which depends on the two-
vector input sequence such that a maximum weighted satis-
fying assignment for the function causes maximum weighted
activity in the circuit. Constructing this boolean function is
complicated for general static CMOS logical networks because
gates in these networks can glitch. That is, changing the in-
put vector once may cause multiple transitions to occur on
a particular gate's output node, and this can contribute sub-
stantially to dissipation. As this glitching phenomenon must
be related to differing signal arrival times at a gate’s inputs,
glitching only occurs in two-level networks with varied gate de-
lays or in multiple level networks, both of which are examined
below.

4.1 Two-Level Networks

Two-level, or sum-of-product, networks are logical networks
in which the primary inputs feed and gates whose outputs are
inputs to or gates. The commonly used PLA’s are logical
networks of this form, and therefore two-level networks are
an important special case. We denote the N primary inputs
of the two-level network as ¢y, 43, .. iy. In order to deter-
mine the two-vector sequence that maximizes dissipation in
the network, we consider that the first vector v0 is applied
to the primary inputs of the circuit and the circuit is allowed
to stabilize. Then, at time ¢, we change the inputs to a sec-
ond vector vf. In addition, we assume that the changes in
the i;’s and their complements from v0 to vt happen simul-
taneously — this would correspond to the often-encountered
case of combinational logic being embedded between sets of
latches. Below, we derive transformational algorithms, under
several gate delay models, for computing boolean equations
for the transitions made by each gate output in the network.

4.1.1 Zero-Delay Model

Under the zero-delay model, transitions are assumed to hap-
pen instantaneously. Therefore, glitches cannot occur at the
outputs of any of the gates and each gate can make at most
one transition, 0 — 1 or 1 — 0. For an and gate g; in a
two-level network to make a 0 — 1 transition,

7= (anv0 = ¢) A\ (anut £ ¢) 2

must to be satisfied (evaluate to a logical one). Here, the
superscript r denotes that this is the boolean equation for a
rising transition, and ¢; denotes the cube corresponding to

19.7.2

the and gate g;. In general, ¢; will contain literals correspond-
ing to the variables i; or their complements. If, for instance,
e = {i1, 72}, the Boolean equation corresponding to the
above condition would be

= (1@ vV 0dw0:) A (1@ A 0@ uty).

This corresponds to the fact that in order for ¢; to evaluate to
al, iy =1 A iz =0. The equation simplifies to:

f7= (@0 Vo v0) A (vt A WD)

Similarly, in order for an and gate ¢; to make a 1 — 0
transition,

o= (@nv0 #£¢) A (cinuvt = ¢) (3)

must be satisfied, where here the superscript f stands for
falling transition. For an or gate h; to make a 0 — 1 transi-
tion, we require that the previous values of inputs all be 0, and
at least one input make a 0 — 1 transition. Assuming that
the and gates g1, g2, .. gp feed the or gate h;, the boolean
equation for the rising transition is:

ei” = (N0 = ¢) A (c2Nv0 = @) . A(ernw0 = ¢)) A\
(h" Vv "V s)

Similarly, for an or gate h; to make a 1 — 0 transition, we
require that at least one previous value of input be a 1, and

all inputs that were 1 should make a 1 — 0 transition. The
condition is encapsulated by:

el = ((ciNv0 # ¢)V (c2nvd #).V (ear0 # ¢)) A
(1 N0 # ¢) ® fi) . A ((c1nN0 #) © far’)) (5)

The multiple-output Boolean function we are interested in
is the function whose outputs correspond to Eqns. 2, Eqns.
3, Eqns. 4 and Eqns. 5. Each of these equations will have
an associated weight related to the size of the load capaci-
tance on the gate output involved, as described in section 2,
and an assignment for v0 and vt that maximizes the sum of
the weights associated with the satisfied equations will also
maximize dissipation.

4.1.2 Unit-Delay Model

The unit-delay model results in exactly the same analysis as
the zero-delay model. Each and gate can make a single tran-
sition at most. Since we assume unit delays for all the and
gates, this means that the inputs to the or gates change si-
multaneously. This implies that the or gate makes a single
transition, i.e. does not glitch. Eqns. 2-5 can be used directly
to estimate maximum dissipation in a two-level circuit under
the unit-delay model.

4.1.3 A General Delay Model

In the general case, there will be differences in the switching
times of the different gates in a network. Large fan-in gates
will tend to switch more slowly. Switching times are also af-
fected by fanout loads.

Under a general delay model, delay attributes of different
gates can be arbitrary positive integer values. This compli-
cates dissipation estimation since glitches can occur. Assum-
ing, as before, that the inputs change simultaneously, the and
gates can make at most a single transition. However, an or
gate may see two transitions occurring at different inputs at
different times. If the transitions happen to be of the form of
Figure 1, we will have a glitch the or gate output.

I
L

B

Figure 1: Glitch at or gate Output

Lemma 4.1 An or gale in a two-level logic circuit can make
no {ranstlion, a 0 — 1 iransition, a 1 — 0O transition or glilch
1 - 0 — 1. No other oulpul changes can occur under an
arbitrary delay model due 1o the application of a two-vector
input sequence.

Proof: Any and gate that feeds the or gate in question can
make at most a single transition 0 — 1 or 1 — 0. If the former
occurs, we have a controlling value at the input to the or gate,
and whatever other input transitions follow, the output of the
or gate will not change from logic 1. Thus, if the or gate
makes a 0 — 1 transition, its output stays constant afterward.
This implies that a 0 — 1 — 0 glitch cannot occur, and the
only transitions possible are those enumerated above. u

If we wish to find the correct input pattern that maximizes
the dissipation under a general delay model, we need to aug-
ment the set of equations derived earlier to include or gate
glitching. The and gate equations, namely, Eqns. 2 and Eqns.
3 remain the same. For each or gate, the strategy we will
use is to construct a 2-output function that corresponds to
the number of transitions the gate will make. A value of 00
for the 2-output function corresponds to no transitions, 01
corresponds to a 0 — 1 transition, 10 corresponds to 1 — 0
transition, and finally 11 corresponds to a 1 — 0 — 1 glitch
(two transitions).

The conditions necessary for a 0 — 1 transition are simply
those given by Eqns. 4. The conditions for a 1 — 0 transition
and no change thereafter are given by Egns. 5. The conditions
fora 1 — 0 — 1 glitch are summarized below:

e No and gate stays at 1.

o At least one and gate feeding the or gate should make a
1 — 0 transition.

e At least one and gate should make a 0 — 1 transition.

e All the and gates making 1 — 0 transitions should do so
before the and gates making 0 — 1 .transitions.

We can write Boolean equations for each of the conditions
above:

((e1nNvd = ¢) V (anwt = ¢)) A .

N ((carnv0 =) V (carnot = ¢))

19.7.3

LAV RV OV i
v vov il
(A" f (di<d) A A AT ud (di<dm)) A

(f fo? disd) A A" fd (di<du)) A - A

(fu—1" far’ (dyr-1r < dw)) (6)

where f;" and f;/ are as defined in Eqns. 2 and Eqns. 3, and
d; is the delay of and gate g;.

One can now use the max-satisfiability algorithms of Section
5 on the constructed function to find the two-vector input
sequence that maximizes dissipation under an arbitrary delay
model. It should be noted that given a circuit, the d; values
are constants, and the inequalities in Eqns. 6 evaluate to 1 or

4.2 Multi-Level Static CMOS Circuits

In this section, we will generalize the transformations pre-
sented in the previous section to apply to arbitrary multi-level
implementations under the zero and unit delay assumptions.
As before, the multi-level circuit is assumed to have N inputs
i1, %2, .. iy, and we will assume that the first vector v0 is
applied to the those inputs and the circuit allowed to stabi-
lize, then at time ¢, we apply the second vector vi. Again, we
will assume that the changes in the i; from v0 to vt happen
simultaneously.

4.2.1 Zero-Delay Model

Under the zero-delay model, each gate in a multi-level circuit
can make at most a single transition (since all transitions hap-
pen instantaneously). Therefore, we can use the logic function
of each gate to determine if the gate will switch or not on the
application of vt. This is simply represented by the condition:

Ji = (Nv0 = @) A (hinot # ¢)) V
((hinv0 #) A (RinNvt = ¢)) %

where h; is the logic function corresponding to gate g; in the
multi-level network. Finding an input sequence v0, vt such
that maximize }-; C; where C;j is the output capacitance of
gate j and the sum is taken over the indices j for which f; is
satisfied.

4.2.2 Unit-Delay Model

Even under the idealization of a unit-delay model, the gate
output nodes of a multi-level network can have multiple tran-
sitions in response to a two-vector input sequence. In fact,
it is possible for a gate output to have as many transitions as
levels in the netwoﬁ(. For problems of this kind, it is easiest to
construct the boolean equations that describe the dependence
of gate output transitions on the input sequence v0, vt by a
post-processing of symbolic simulation.

Specifically, we construct the boolean functions describing
the gate outputs at the discrete points in time implied by the
unit-delay model. That is, we consider only discrete times
t,t +1,...,t + 1, where t is the time when the input changes
from v0 to vt, and | is the number of levels in the network. For
each gate output i, we use symbolic simulation to construct
the I boolean functions fi(t + j), j € 0,...,l which evaluate
to 1 if the gate’s output 1s 1 at time ¢ 4 j. Note that as
we assume no gate has zero delay and that the network has
settled before the inputs are changed from v0 to vt, fi() is the
logic function performed on v0 at the i** gate output. Finally,
we can determine whether a transition occurs at a boundary

Figure 2: Two-Level Inverter-And Network

between discrete time intervals ¢t +i and ¢ + 1+ 1 by XOR’ing
fi(t + 1) with fi{t +1i+1).

For example, consider the two-level inverter-AND network
in figure (2). For this network,

fi(t) =00

f2(t) = v0; A v0,.
Assuming both gates have unit delay,

filt+1) =5() = v

Falt+ 1) = fi(t) Aia(t) = 07 Aot
Finally,

Lot +2) = fi{t + 1) Adg(t + 1) = vi} Avty

For this example there are three possible transitions: that
the inverter changes state from ¢ to t + 1, that the and gate
changes state from ¢ to { + 1, and that the AND gate changes
state from t 4+ 1 to t + 2. The boolean equations for these
transitions are respectively:

er=H)® fr(t+1)

e2 = fo(t)® f2(t +1)
ea = fot + 1) ® fo(t +2).

Note, if it is possible to find a two-vector sequence v0, vt
that simultaneously satisfies e, €3 and eg, v0, vt is the input
sequence that will maximize dissipation.

It is not usually necessary to generate an f;(t+j) for all val-
ues of j between 0 and I, many of these terms can be discarded
by considering two easily computed quantities.

Definition 4.1 The minrank of a logic gate oulput is one plus
the minimum of the minranks of the logic gate’s inputs. Pri-
mary inpuls have a minrank of zero.

Definition 4.2 The mazrank of e logic gale oulpul is one
plus the mazimum of the mazranks of the logic gale’s inpuls.
Primary inpuls have a mazrank of zero.

The minrank and mazrank quantities are useful because of
the following lemma.

19.7.4

Lemma 4.2 The boolean equations for all possible transitions
of the i*® logic gate can be delermined from XOR ’ing neighbors
in the ordered set of boolean funclions

{£:@), fi(t +minrank;), fi(t+ minrank; + 1), ...,

fi(t + mazrank; — 1), fi(t+ mazrank;)} (8)

The above lemma follows directly from the unit delay model.
A gate output cannot change until the change in the nearest
input propagates through, and will stop changing when the
input furthest away finally arrives.

5 Solving Max-Satisfiability

5.1 Introduction

The classical definition of max-satisfiability involves finding a
satisfying assignment for clauses in a Boolean function, where
the clauses represent disjunctions of literals [2]. Algorithms
have been proposed (e.g. [5]) for exact and approximate so-
lutions to this problem. Here, we are concerned with finding
satisfying assignments for arbitrary Boolean functions that can
themselves involve conjunctive and disjunctive terms. In the
sequel, we will present two strategies we have developed for
general max-satisfiability.

5.2 A Branch-and-Bound Algorithm

Max-satisfiability can be solved using a branch-and-bound
strategy. The efficiency of any such algorithm depends greatly
on the pruning/bounding methods that are used while branch-
ing over various solutions. We use a pruning method based on
a maximal disjoint set heuristic.

The algorithm is described below. We assume that we are
given the ON-sets of the N outputs in the multiple-output
Boolean function, in sum-of-product form. U corresponds to
the set of all N outputs. L corresponds to the current set of
selected outputs. R corresponds to the currently remaining
outputs. Initially, R=U, L = ¢.

1. Remove all outputs from R whose ON -sets have a null
intersection with the intersected ON-sets of the current
clement set L.

2. Find a maximal set of maximal disjoint groups of outputs
in R, namely D1, D3, .. Dy . A disjoint group of outputs
satisfies the property that the the pairwise intersection of
their O N-sets is null. No output can belong to more than
one D;. I (JILIE + (IRl = oM, (IDil] = 1)) is less
than or equal to the best solution found thus far, return
from this level of recursion. Else, if R = ¢, declare this
solution as the best recorded thus far.

3. Heuristically select an output f from R (Tts ON-set will
have a non-null intersection with the intersected ON-sets
of the selected output set, L). Recur with L = LU f and
R = R-— f. Recur also for L unchanged, R = R - f.

The bounding strategy used is as follows: If at any given
point in the algorithm, we have a group of outputs in It whose
pairwise O N-set intersections are all null, it implies that we
can select at most one output from the set. This corresponds
to the ||D;]| — 1 term in Step 2 above. Finding a mazimum
disjoint group is itself NP-complete, however, we need only a
large disjoint group, and therefore we use a fast, greedy algo-
rithm for this purpose. By finding large, disjoint groups effi-
ciently we can prune the search space considerably and many
searches can be terminated high up in the recursion.

5.3 Max-Satisflability Via Prime Implicant
Generation

In this section, we will show how the set of primes for a
multiple-output Boolean function can be searched to find a
maximum satisfying assignment over a set of weighted out-
puts. This is a useful observation since efficient prime gener-
ation algorithms (e.g. [6]) have been developed in the past.

Theorem 5.1 : Given a multiple-outputl Boolean function
with associaled positive weights for individual ouipuls, a maz-
imum salisfying assignment can be found by inspecling all the
primes of the multiple-outpul funcizon.

Proof: Assume that a max-satisfying assignment corresponds
to setting the set of outputs S C U to 1. In order to prove
the theorem, we have to show that a prime exists with an
output part that contains the outputs in §. Assume not. Since
we have a simultaneous satisfying assignment for the outputs
in S, it implies that we have a cube In the Boolean n-space
corresponding to the multiple-output function whose output
part contains the outputs in S. By the definition of primality,
this cube is either a prime or is covered by a prime. In the
former case, we have a direct contradiction. In the latter case,
the prime that covers this cube has to contain all the outputs
in S in its output part, leading to a contradiction. u

To find a maximum satisfying assignment under arbitrary
weights for outputs, we simply walk down the list of primes
computing the value of the weight function for each prime,
and pick the prime with the highest value.

5.4 Approximation Strategies

For very large circuits, the algorithms described in the previ-
ous two sections may require too much memory or CPU time
to complete. In this case, it is of interest to find a tight up-
per bound on the maximum power dissipation. Since we are
dealing with worst-case power, the approximation or bounding
algorithm should not underestimate the power dissipation.

The number of primes in a multiple-output Boolean func-
tion strongly depends on the number of outputs in the func-
tion. One way of reducing the number of primes, thereby
easing the problem of max-satisfiability, it to merge two (or
more) outputs together into a single output that is the Boolean
or of the two outputs, with an associated weight that is the
sum of the individual weights. This implies that we have ez-
panded the ON-sets of the two outputs. Expansion of the
O N-sets provides a correct bound, since the weight function
corresponding to any assignment only increases (or stays con-
stant). Arbitrarily large expansions will result in undesirably
loose bounds — one wishes therefore to select outputs with
lar%e O N-set intersections and merge these outputs together,
rather than outputs with small/null ON-set intersections.

We can compute the worst-case error due to an expansion
of outputs as follows: Let the original ON-sets be ON;, 1 <
i < N. Let the expanded ON-sets be ON{. Compute
E; = ON!— ON;. Find a set of maximal disjoint groups
of outputs using the E;, namely Dy, D,, .. Dar, such that
D\UDyU .. Dy = Q, where @ is the set of outputs such
that E; # ¢, and no output belongs to more than one D.
In the worst-case we may erroneously assume satisfiability for
an output from each of the D;. Thus, the worst-case error is
given by M.

Merging outputs can also reduce the complexity of the
branch-and-bound algorithm. In the worst-case, one searches
for all possible 2V combinations of intersecting outputs, given
N outputs. Reducing N can speed up the algorithm consid-
erably. This approximation allows power estimation for ar-
bitrarily large circuits, but an intelligent merging of outputs
has to be performed in order not to signiﬁcan&y overestimate
worst-case power dissipation.

19.7.5

| EX"™ T #inp | Fout | Hzate | #level']

tcktl 5 J 31 2
tckt2 7 3 147
tcktd 9 1 140
tcktd 16 65 231
mcktl 8 a8 45 3
mcki2 i’ 30 03 4
mckt3 3 27 104
mckitd 16 27 195

Table 1: Statistics of Examples

Another means of approximation is simply to assume that
certain gates make the maximum number of possible transi-
tions (bounded by the number of levels of logic that precede
the gat’(;}, and not generate the transition equations for these
gates. This is especially useful when a large number of gates
occur in the first 2-3 levels of the logic circuit and much fewer
gates occur in later levels. We ignore the transition equations
corresponding to the ”deeper” gates and add their maximum
number of possible transitions to the worst-case estimate ob-
tained on the circuit after deleting these gates.

6 Experimental Results

In this section, we present preliminary experimental results
using the power estimation techniques described earlier. We
chose several PLA and multilevel circuit examples whose
statistics are summarized in Table 1. The PLA examples are
tcktl through tckt4 and the multilevel circuits are mektl
through mckt4. The number of inputs, outputs, gates and
logic levels in each of the circuits are given in Table 1.

We used a general delay model for the two-level circuits,
since the difference in the sizes of the gates was large. A unit-
delay model was used for the multilevel circuits.

In Table 2, we present the results obtained using the trans-
formation and max-satisfiability algorithms. The number of
inputs and outputs in the transformed logic function is indi-
cated. The total CPU time required on a puVAX — 111 for
transformation, collapsing to a two-level representation using
the program wmis [1}, and max-satisfiability checking by prime
generation using the program EsPRESSO [§] are given in Table
2. The maximum number of outputs that could be simul-
taneously satisfied is also indicated. In certain cases, prime
generation on the transformed circuit was not possible. For
all the examples (even those for which exact max-satisfiability
was possible), we used the approximation strategy (which re-
duces the complexity of the satisfiability check) described in
Section 5. The difference between the approximation and ex-
act strategies is small, however, the approximation algorithm
takes significantly less CPU time and is viable for larger func-
tions. The worst-case error (overestimation error) using the
approximation strategy is also given for each of the examples
— for examples tcktl through tckt3, and examples mcktl
through mckt3, the error in approximation is significantly
smaller than the worst-case error.

We are currently implementing the branch-and-bound strat-
egy for max-satisfiability described in Section 5. The pruning
strategies in the algorithm will afford exact max-satisfiability
for significantly larger functions.

7 Conclusions
ments

and Acknowledge-

The difficulty in estimating worst-case power dissipation in
combinational circuits mainly stems from the fact that power

EX EXACT APPROXIMATE
CPU T #trans™| CPU | Ftrans w.C.
time time error

tcki] 20m 1T 10m I1 |3

tckt? 3.0h 03 I.8h 57

tcktd 4.8h 591 T7h 64 T

tcktd | > 1I0h — | 2.5h 72

mcktT T.7h 22 0.7h 23 5

mckt?2 1.9h 22 1.0h 24 1

mcktd 3.5h 33 1.6h 37 10

mckid [> T0h — 2.1h 80 15

Table 2: Worst-Case Power Dissipation Results

dissipation is input pattern dependent and the number of
possible input patterns grows exponentially with the num-
ber of circuit inputs. By focusing on a simplified model of
power dissipation, namely weighted gate output activity, we
were able to transform the problem to one of weighted max-
satisfiability. We developed exact and approximate algorithms
to solve weighted max-satisfiability. The approximate algo-
rithms are robust in the sense that they do not underestimate
the worst-case power dissipation in the circuit.

In future work we will examine the effectiveness of our ap-
proximate algorithm for max-satisfiability applied to the equa-
tions generated by more general multi-level networks. In ad-
dition, similar techniques can be applied to finding the peak
supply current densities. This is also an important problem
because peak current densities are linked to the rate of metal
migration failures.

The author’s would like to thank Dr. Y. T. Yen of Digital
Equipment Corp. for bringing this problem to our attention,
and Mark Coiley for many valuable discussions on the subject.
This work was supported in part by the Defense Advanced
Research Projects Agency under contract N00014-87-K-0825,
and grants from Digital Equipment Corporation and Analog
Devices.

References

[1] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
Wang. MIS: A Multiple-Level Logic Optimization Sys-
tem. In IEEE Transactions on Computer-Aided Design,
pages 1062-1081, November 1987.

2] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-.completeness.
W. H. Freeman and Company, 1979.

[3] L. Glasser and D. Dobberpuhl. The Design and Analysis
of VLSI Circuits. Addison-Wesley, 1985,

R. Burch F. Najm P. Yang D. Hocevar. Pattern-
independent current estimation for reliability analysis of
cmos circuits. In ACM/IEEE 25th Design Automation
Conference, pages 294-299, 1988.

{4

o)

f5] D. S. Johnson. The np-completeness column: an ongoing
guide. Journal of Algorithms, 6:291-305, 1985.

(6] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-
Valued Minimization for PLA Optimization. In [EEE
Transactions on Computer-Aided Design, pages 727-751,
September 1987.

19.7.6

