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1. Introduction

Simulation of small geometry devices by particle simulation or Monte-Carlo techniques is
becoming increasing popular, even though the method is computationally much more expen-
sive than numerically solving the standard or modified drift-diffusion equations[2][3][4]. This
popularity is mostly due to the ease in which physical phenomenon, particularly scattering
mechanisms, can be directly incorporated into Monte-Carlo simulations. In the past, the
primary use of Monte-Carlo simulation has been to investigate the physics of semiconduc-
tors, and the numerical algorithms used were kept as simple as possible. The recent more
widely spread use of Monte-Carlo simulation has focused investigations on more sophisticated
numerical algorithms to try to reduce the simulation time and to improve accuracy.

In this paper we address the problem of computing the self-consistent electric fields for
Monte-Carlo simulation of physical devices. The approach used in many existing programs
involves solving Poisson’s equation by first constructing a mesh over the device and dis-
cretizing the potential using finite-difference methods. Then, the discrete space charge in
the device, represented by the many thousands of particles, is associated with points in the
mesh by a cloud-in-a-cell approach. The forces on the individual particles are computed from
the discretized representation of the potential[2]. The short-coming of this approach is that
when there are few particles in any particular region of the mesh, the interaction of nearby
particles may not be calculated accurately, and may jump as a particle crosses boundaries
from one region of the mesh to another. In addition, nearby and far-field Coulomb interac-
tion can not be easily separated, making accurate electron-electron scattering calculations

difficult.
II. Separation Approach

It is possible to derive an alternative that avoids some of these difficulties by separat-
ing the Poisson equation into two pieces, one that represents potential due to doping and
potential boundary conditions, and the other due to the discrete electron concentration.
Specifically, consider the Poisson equation for a device in which hole concentration is ig-
nored as

VeV + g (N —n) =0, (1)

where 1 is the electrostatic potential, ¢ is the magnitude of electronic charge, n is the,
in this case discrete, electron concentration, and N is continous net doping concentration.
The potential due to the continous doping and the discrete electron concentrations can be
separated as

VeVip, + gN =0, (2)



and

eV + gn = 0. (3)

where 1, + ¥, = ¥, and in (3) we are assuming that the electron concentration is contained
in a uniform dielectric material.

The forces on each particle due to the gradients in ¥, can be calculated using standard
finite-difference methods, as the charge due to doping can be modeled as being continously
distributed in the device. Since the final goal is to compute the forces on each particle,
the forces due to gradients in 13 on each particle can computed directly by summing the
Coulomb force due to all the other particles, and then handling the boundary conditions with
a boundary element approach. This combination of techniques has the appealing features
handling nearby interactions accurately, and allowing for nearby and far-field interactions
to be easily separated. The summation of the Coulomb forces can be performed in time
that grows linearly with the number of particles using the recently developed fast multipole
algorithm|[1].

III. Conclusions

Once a discretized version of the surface charge density has been computed, the forces
on each of the charged particles due to the gradient of ¥ in Eqn. (3) can be computed
using the multipole algorithm mentioned above. Preliminary experiments indicate that this
computation can be completed in less than 30 cpu seconds on a SUN4 workstation for a
problem with 5000 particles where the contacts have been broken up into 400 tiles. Additional
work is needed to improve the speed of the calculation, and to extend it to the case where
the hole contribution to the forces are considered.
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