Parallel Simulation Algorithms for Grid-Based Analog Signal Processors

L. Miguel Silveira

Andrew Lumsdaine

Jacob K. White

Research Laboratory of Electronics
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

In this paper, specialized algorithms for circuit-level simu-
lation of grid-based analog signal processing arrays on a mas-
sively parallel processor are described and implementation re-
sults presented. In our approach, the trapezoidal rule is used
to discretize the differential equations that describe the analog
array behavior, Newton’s method is used to solve the nonlinear
equations generated at each time-step, and a block conjugate-
gradient squared algorithm is used to solve the linear equa-
tions generated by Newton’s method. Excellent parallel per-
formance of the algorithm is achieved through the use of a
novel, but very natural, mapping of the circuit data onto the
massively parallel architecture. The mapping takes advantage
of the underlying computer architecture and the structure of
the analog array problem. Experimental results demonstrate
that a full-size Connection Machine can provide a 1400 times
speedup over a SUN-4/280 workstation.

1 Introduction

The recent success using one and two dimensional resistive
grids to perform certain filtering tasks required for early vi-
sion [Mead 88] has sparked interest in general analog signal
processors based on arrays of analog circuits coupled by resis-
tive grids. As is usually the case, before fabricating these ana-
log signal processors, substantial circuit-level simulation must
be performed to insure correct functionality. Although desir-
able, simulation of complete signal processors has not been
attempted because of the computational cost. Ambitious cir-
cuits consist of arrays of cells where the array size can be as
large as 256 x256, and each cell may contain up to a few dozen
devices [Wyatt 88]. Therefore, simulation of a complete sig-
nal processor requires solving a system of differential equations
with hundreds of thousands of unknowns.

The structure of grid-based analog signal processors is such
that they can be simulated quickly and accurately with spe-
cialized algorithms tuned to certain parallel computer archi-
tectures. In particular, the coupling between cells in the
analog array is such that a block-iterative scheme can be
used to solve the equations generated by an implicit time-
discretization scheme, and furthermore, the regular structure
of the problem implies that the simulation computations can
be accelerated by a massively parallel SIMD computer, such
as the Connection Machine ®*[Hillis 85). In the next section
of this paper, we describe an example grid-based analog sig-
nal processor, and in Section 3 we describe the simulation
algorithm. In Section 4, the mapping onto the Connection

¥Connection Machine is a registered trademark of Thinking Machines
Corporation.

CH2924-9/90/0000/0442$01.00 © 1990 IEEE

442

Machine is detailed. Experimental results are presented in
Section 5 and the conclusion and suggestions for further work
are contained in Section 6.

2 Problem Description

Consider the circuit in Figure 1, an idealized version of a grid-
based analog signal processor used for two-dimensional image
smoothing and segmentation {Lumsdaine 90]. The node equa-
tion for a grid point {,j in the network is

ctij = g7(vij — ti,)
+¢,(vi,§ — vig1,5) + gs(vij — vie1,4)
+95(vij = vij+1) + 95 (vij — vij-1)

)

where u;; represents the image data at the grid point {,j,
v;,; is the output voltage at node i,7, g, is the input source
impedance, c¢ is the parasitic capacitance from the grid node
to ground, and g,(-) is a nonlinear “fused” resistor. In this
circuit, the g, resistors pass currents in such a way as to force
v;,j to be a spatially smoothed version of u;,;, unless the dif-
ference between neighboring u; ;’s is very large. In that case,
g, no longer conducts, there is no smoothing, and the image
is said to be “segmented” at that point.

In a more complete representation of the image smooth-
ing and segmentation circuit, the voltage source u;; and the
source impedance gy are replaced with a subcircuit which typ-
ically contains operational amplifiers and a phototransistor.
If such a subcircuit has M internal nodes and contains only
voltage-controlled elements, then it can be described by a dif-
ferential equation system of the form

%qma(?i.j(t)»”-'.f(t),t) = fiw (i (1), vi;(8),1) (2)

where #;; € ®RM is the vector of the i,j* sub-
circuit’s internal node voltages, and guus(%i;(t), vii(t),),
Soun(i 5 (), vi,j(t),1) € R™ are the vectors of sums of charges
and sums of resistive currents, respectively, at each of the sub-
circuit’s internal nodes. Incorporating the subcircuit’s behav-
ior into the equation for grid point i, j leads to

etij = t,ub(vi g, Ui5)
+9,(vij ~ vigr,5) + 9s(virj — vi15)
+9,(vi 5 — vij41) + 82 (35 — Vi j-1),

®)

where 1,48 (vi j, 5; ;) is the current entering subcircuit {, j from
grid node i, j.

For our purposes, an N x N grid-based analog signal pro-
cessor, or analog array, is any circuit that can be described
by a system of equations generated by replicating Eqn. (2)

and Eqn. (3) for each i,j € 1,...,N. Note that this defini-
tion enforces a regular structure, and only allows for coupling
between neighboring subcircuits through two-terminal nonlin-
ear resistors. The nonlinear resistors are usually implemented
with transistors, so our definition of an analog signal processor
still represents an idealization, although the extension to the
general case is straightforward.

3 Numerical Algorithms

For notational simplicity, the system of equations that describe
an N x N grid-based analog signal processor, defined in the
previous section, will be written compactly, and perhaps not
very informatively, as

2 a(0) = £(o(2),)

where q(v(t)), f(v(2)) € RN *(M+1) are the vectors of sums of
node charges and node resistive currents.

The transient simulation of the analog grid involves numer-
ically solving (4). To compute the ¢ .ution, it is possible to
use simple explicit or semi-implicit numerical integration algo-
rithms, but for these types of circuits, experiments show that
an implicit method like the trapezoidal rule is substantially
more efficient [Silveira 90]. The trapezoidal rule leads to the
following algebraic problem at each time step h:

" a(u(t + b)) — q(v(t)) + %[f(v(t +h)+ ()] =0. (5)

As is standard, the algebraic problem is solved with Newton’s
method,

Jr(v™ (4 R) ™t +h) — v (t+ R)] = ~F(v™(t +h)) (6)

where

F(u(t+h)) = [q(v(t +h)) - g(v())] + glg[f(v(t +h)+f(v(1)))
7
and the Jacobian Jr(v(t)) is @

In “classical” circuit simulators such as SPICE [Nagel 75],
the linear system of equations for each Newton iteration is
solved by some form of sparse Gaussian elimination. When
simulating grid-based signal processors, where the coupling
between subcircuits is restricted to nonlinear resistors, the
Newton iteration equation will be such that its solution can
be efficiently computed by iterative algorithms like conjugate-
gradient squared (CGS) [Sonneveld 89, Burch 89]. To demon-
strate this, in Table 1, we compare the CPU time required
to compute the transient analysis of the network in Figure 1
using several different matrix solution algorithms to solve the
Newton iteration equation. This problem is hard for an itera-
tive method because, though not described here, the transient
analysis is performing a continuation on the nonlinear resis-
tor elements that changes the conditioning of the matrix with
time (see [Lumsdaine 90] for details). As the table indicates,
sparse Gaussian elimination is much slower than CGS? or ILU
preconditioned CGS, both of which perform almost identically.
This is a fortunate result, because our goal is to develop an ef-
ficient parallel simulator, and unpreconditioned CGS is easiest
to parallelize.

2This problem is symmetric, so CGS and standard conj'ugate-gradient
are equivalent

443

Size]| Direct CG JILUCG |
16x 16 16,63 | 11.72 10.27
32x 32 156.57 | 60.72 50.75
64x 64 || 1856.12 | 272.30 | 224.12

Table 1: Comparisons of serial execution time for direct, CG,
and ILUCG linear system solvers when used for the transient
simulation of the circuit in Figure 1, where gy = 3.0e — 5 and
¢, has a conductance of le — 3 when linearized about zero.

4 Connection Machine Implementa-
tion

The Connection Machine model CM-2 is a single-instruction
multiple data (SIMD) parallel computer consisting of 65,536
bit-serial processors and 2048 Weitek floating-point proces-
sors. The bit-serial processors are clustered together into
groups of 16 to make a single integrated circuit, and these
IC's are connected together in a 12-dimensional hypercube.
Two IC’s, or 32 processors, share a single Weitek IC. Since
the CM-2 contains 2048 Weitek IC’s, a speedup of a factor of
9048 over conventional computers containing a single Weitek
IC (e.g., a SUN-4) is conceivable.

For an algorithm to approach this peak parallel performance
on the CM, it must satisfy three requirements. First, the
problem must have enough parallelism to use all the avail-
able processors. Second, the algorithm can depend only on
local or infrequent interprocessor communication, like on any
parallel machine. And third, the algorithm must be mostly
data-parallel because of the SIMD nature of the Connection
Machine. By data-parallel we mean:

e One can identically map individual pieces of data to in-
dividual processors for all relevant processors and

o One can operate identically on the data with all the rele-
vant processors

The general circuit simulation problem violates all three of
the above constraints, and previous attempts at circuit simu-
lation on the Connection Machine have not yielded impressive
results [Webber 87, Silveira 90]. As we will show in the rest of
this section, simulation of grid-based analog signal processors
is well suited to the CM. These circuits are large, and can be
simulated with algorithms that are mostly data-parallel and
which depend on mostly nearest-neighbor communication be-
tween processors.

4.1 Data to Processor Mapping

The two-dimensional nature of grid-based analog signal pro-
cessing circuits naturally maps into a two-dimensional geom-
etry on the CM, in such a way as to maintain data paral-
lelism and locality. The circuit is divided into identical cells
(as shown in Figure 1) and each processor is assigned the data
associated with each cell, with nearest-neighbor grid cells be-
ing mapped to nearest-neighbor processors. It is an important
point that the assigned data includes the node voltages, cur-
rents, charges and derivatives, bul not a complete description
of the cell, only the CM’s front-end computer has that.

It can be seen from Figure 1 that some elements in each
cell cross the cell boundaries, and the communication so im-
plied must be organized carefully to maintain maximum data-
parallelism. In our approach, copies are made of shared-nodes,

Figure 1: Grid of nonlinear resistors and its division into iden-
tical cells.

Figure 2: Separation of the cells by duplicating nodes. The
shared nodes and pseudo-nodes are outlined with squares and
triangles, respectively.

by which we mean nodes within each cell to which elements
from other cells are connected. These copies are referred to
as psendo-nodes. As can be seen in Figure 2, using pseudo-
nodes implies that the data for the cell devices is contained
completely within the cell.

Two types of consistency between the shared-nodes and

pseudo-nodes must be maintained through interprocessor com-
munication, namely:

Voltage Consistency: Pseudo-Nodes must have the same
voltage as their corresponding shared nodes.

Charge and Current Consistency: Charges and currents
flowing into the pseudo-nodes are summed at the corre-
sponding shared nodes.

This particular mapping of the circuit data insures that the
many cells in a large grid can be simulated in a data-parallel
fashion. That is, simulation of the entire grid is accomplished
by simulating a simple cell using many copies of data, and then
enforcing the voltage, charge, and current consistencies for the
shared nodes and pseudo-nodes. Note that the cells on the east
and south circuit boundaries respectively do not have east and
south connecting elements. In order to model this properly on
the CM, boundary processors are turned off whenever data
corresponding to non-existent elements is manipulated. For
reasons of clarity we will omit further discussion of this oper-
ation; it is performed in a straightforward manner for all the
algorithms to be presented.

4.2 Device Evaluation

Evaluating the right-hand side and the Jacobian for the New-
ton iteration, equation (7), involves computing surns of device
cutrents and charges. Given the previous discussion of the
data to processor mapping, the device evaluation portion of
the simulation is obvious:

1. Copy node voltages from shared nodes to pseudo-nodes
(voltage consistency step)

2. Evaluate cell devices in parallel

3. Sum node charges and currents from pseudo-nodes to
shared nodes (charge and current consistency step)

4.3 Linear System Solution

As mentioned in the previous section, for the case of grid-based
analog circuits, solving the linear Newton iteration equation
(6) using CGS is not only easy to parallelize, it is faster than
using sparse Gaussian elimination, and nearly as fast as us-
ing ILUCGS. There are two parts of the CGS iteration which
involve parallel data: the vector inner product and the matrix-
vector product. The vector inner-product is accomplished
with an in-place multiply and a global sum. The matrix-vector
product y = Az is accomplished with the following sequence
of operations:

1. Copy z values from shared nodes to pseudo-nodes (voltage
consistency step)

2. Perform matrix-vector product with simple-cell matrix

3. Sum y values from pseudo-nodes to shared nodes (current
consistency step)

That the operations involved in the matrix vector product are
similar to those required for the device evaluation should come
as no surprise. The communication steps are still required for
consistency, and the device evaluation step is now replaced
by an in-place matrix-vector product where the local matrix
corresponds to the linearized conductance matrix of the simple
cell circuit. ‘

5 Experimental Results

In order to test our algorithms, a simulation program was
written for the CM, using MIT’s SIMLAB program [Simlab] as
a base. The parallel portions of the code were written in C*
Version 6.0, a CM superset of C. The front-end experiments
were run on a conventional SUN-4 workstation and the CM
results were obtained on a 16K CM-2 with double-precision
floating point hardware. All computations were performed in
double precision arithmetic.

In Table 2, the CPU times required on the CM and the
SUN-4/280 to perform the DC and transient analysis of the
nonlinear resistive grid of Figure 1 are compared. Only a 16k
processor CM was available, but using the “virtual processor”
feature of the CM, the 256 x 256 example was simulated as if
the CM had 64K processors. A real 64K machine would have
run the 256 x 256 example approximately four times faster, and
have produced simulation results approximately 1400 times
faster than a SUN-4/280 workstation.

To investigate how well simulation of more realistic circuits
can be accelerated, the CM simulator was tested on an ideal-
ization of the Retina chip [Mead 88]. To generate the Retina-
like circuit, the voltage source u; ; and the source impedance

DC Trans
Size Serial | CM Serial | CM
64 x 64 147.47 3.96 268.47 6.28
Sx 128 632.80 [3.99 7581.70 | 44.99
256 x 266 1‘2710.2) 10.84 (214110.4) 610.27

Table 2: Comparisons of serial and CM execution times (using
CGS). Extrapolated serial results are contained in parentheses.

gy for the circuit in Figure 1 are replaced with the Retina
chip’s follower-connected transconductance amplifier subcir-
cuit. This subcircuit has eight internal nodes and consists of
twelve MOS devices (SPICE MOS level 3 is used in SIMLAB).
The coupling resistors, represented by g, in Figure 1, were set
a small value, 10K, and a large value, 10MQ, to test the
simulator. The run times on the CM and the SUN-4 for simu-
lating these two examples are given in Table 3. For the largest
example shown, the best CM algorithm is over 285 times faster
than the best serial algorithm.

There are two columns of CM results in Table 3, correspond-
ing to two types of CGS algorithms. In the first column, the
times using an unpreconditioned CGS algorithm are given, and
in the second column, the times using a block-preconditioned
CGS (CGSB) algorithm is given. The block preconditioner
used here is easy to compute in parallel, it only involves factor-
ing each of the subcircuit Jacobians and corresponds to solving
that piece of the system described by equation (2) directly. As
can be seen from the table, this preconditioner accelerates the
CGS convergence enough to improve the CM run times by as
much as a factor of four.

Circuit Senal CM
gs | Size Direct | CGSIL CGS [CGSB
led | 4x4 26.00 28.92 [201.03 | 139.37
: x 8 106.22 121.25 || 452.95 | 143.91
16x16 435.38 496.70 || 604.89 | 143.19
32x32 1991.33 7156.97 || 555.22 | 144.31
64x64 (9107.9) | (9366.8) || 623.33 | 144.43
128x 128 || (41657.4) | (40676.5) || 589.96 142.69
le7 | 4x4 26.73 28.17 || 140.64 | 121.74
8x8 106.03 T13.98 | 142.28 | 121.81
16x16 435.37 461.027]| 141.98 | 122.22
32x 32 2043.18 1954.42 || 150.86 | 150.73
64% 64 (9588.6) | (8269.3) 1 141.69 | 127.89
128% 128 || (44999.6) | (34988.1) || 14451 | 122.37

Table 3: Comparisons of serial and CM execution times. Ex-
trapolated serial results are contained in parentheses.

6 Conclusion

In this paper, we presented algorithms for simulating very
large grid-based analog VLSI circuits on a massively parallel
processor. By restricting our attention to this class of circuit
problems, we were able to more fully exploit the capabilities
of the Connection Machine, as demonstrated by the experi-
mental results. It is perhaps remarkable to note that with our
implementation on the CM, we were able to simulate a real-
istic vision circuit with almost 200,000 devices and 150,000

podes in less than 10 minutes.

Our future work will be to extend the simulator to allow
more general cell interconnection and to investigate whether
further speed improvements can be obtained through the use
of nonlinear Krylov subspace methods — the nonlinear ana-
logue of CG.

Acknowledgments

This work was supported by the Defense Advanced Research
Projects Agency under Contract No. N00014-87-K-825 and
by the Portuguese INVOTAN committee. The authors are
grateful to Thinking Machines Corporation, especially Rolf
Fiebrich, for providing hardware and software support for the
development of the simulator. The authors would also like to
thank Prof. John Wyatt and the MIT Vision Chip Project
group for providing the motivation for this work.

References

[Burch 89] R. Burch, K. Mayaram, J.-H. Chern, P. Yang, P.
Cox, “PGS and PLUCGS - Two New Matrix Solution
Techniques for General Circuit Simulation,” Proc. ICCAD-
89, pp. 408-- 411, Nov. 1989.

[Hillis 85] W.D. Hillis, The Connection Machine, MIT Press,
Cambridge, MA, 1985.

[Lumsdaine 90) A. Lumsdaine, J. Wyatt, and L Elfadel,
“Nonlinear Analog Networks for Image Smoothing and
Segmentation,” Proceedings of the Inlernational Sympo-
sium on Circuits and Sysiems, pp. 987 ~ 991, May, 1990.

[Mead 88) C. A. Mead, Analog VLSI and Neural Systems,
Addison-Wesley, Reading, MA, 1988.

[Nagel 75] L. W. Nagel, “SPICE2: A Computer Program to
Simulate Semiconductor Circuits,” Electronics Research
Lab Report, ERL M520, Univ. of Calif., Berkeley, May
1975.

[Silveira 90] L. M. Silveira, “Circuit Simulation Algorithms
for Massively Parallel Processors,” S. M. Thesis, MIT, May
1990.

[Simlab] A. Lumsdaine, M. Silveira, and J. White, “Simlab
Programmer’s Guide,” To be published as an MIT memo.

[Sonneveld 89] P. Sonneveld, “CGS, A Fast Lanczos-type
Solver for Nonsymmetric Linear Systems,” SIAM J. Sci.
Stat. Comp., 10(1989), pp. 36-52.

[Tong 88] C. Tong, “The Preconditioned Conjugate Gradient
on the Connection Machine,” Proceedings of the Confer-
ence on Scientific Applications on the CM, Horst D. Si-
mon, ed., pp. 188-213, World Scientific, Singapore, 1988.

[Webber 87] D. M. Webber, A. Sangiovanni-Vincentelli, “Cir-
cuit Simulation on the Connection Machine,” 24th
ACM/IEEE Design Automalion Conf., pp. 108-113, June
1987. :

[Wyatt 88] J. Wyatt, et al, Smart Vision Sensors: Analog
VLSI Systems for Integrated Image Acquisition and Early
Vision Processing, Proposal, MIT, 1988.

