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Abstract

Application of waveform relaxation to semiconductor device
transient simulation has demonstrated encouraging results.
In particular, empirical observations suggest that the relax-
ation is a contraction with respect to the sup-norm in Lime.
In addition, the underlying multirate integration method has
not exhibited instabilities. In this paper we prove that the
two properties are connecled, and use the result to show that
the fArst and second-order backward-difference based inultirate
methods are A-stable.

1 Introduction

When standard spatial discretization techniques are applied
to solving Lhe classical drift-diffusion based differential equa-
tion system used to model semiconductors, the resull, in the
time-dependent case, is a large sparsely-conneccted system of
algebraic and differential equations. The so-generated sys-
tent can be solved by waveform relaxation(WI), an iterative
method whose eventual convergence is guaranteed in this case.
Experiments with WR indicate that it is efficient for two-
dimensional simulation of transients in MOS devices, and can
be as much as an order of magnitude faster than more comn-
monly used direct methods[1][5].

As the WR algorithm is an iterative technique which di-
rectly decomposes systems of differential equations into sub-
systemis which are solved independently, when WR is used
to simulate a semiconductor device, different sections of the
device can be integrated in time with different discretization
timesteps. This mullirate inlegration property of WR is one of
its main advantages over direct methods or “point”-relaxation
schemes.

Examination of the results from numerical experiments us-
ing WR to simulate semiconductor devices yeilds two surpris-
ing observations: the error waveforms produced by iterations
of the WR, algorithm contract in a sup-norm in time, and there
does not seem to be evidence of instabilities introduced by the
multirate integration. There have been separate theoretical
investigations into the rcasons for sup-norm convergence for
both linear and nonlinecar model problems(2][4], and some in-
vestigation into criteria for multirate stability[6]. In this short
paper, we show that the two properties are connected, and
use that result to prove that the second-order backward dif-
ference method is multirate A-stable for diagonally-dominant
problems,
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We start below with basic definitions. In section 3, we prove
that under certain conditions convergence on the infinite in-
terval of both the exact and discrelte WR algorithm imply
multirale A-stability. In section 4 we present a discretized
WR convergence theorem for the multirate case, and finally in
section 5 we present our conclusions.

2 Definitions

For purposes of analysis, we consider solving the linear time-
invariant problem

z(t) = Az(t) z(0) = =zo (1)

where £ € [0,00), (1) € R, and A € R"*" is assumed strictly
diagonally dominant with negative diagonal entries. That is,
there exists some ¢ > 0 such that

—ai > e+ Yy |a]

i

(2)

foralli € {1,...,n}, where a;; is the ij** element in the matrix
A.

When Gauss-Jacobi WR. is applied to solving (1), the iter-
ation update equation for z*+! given z* is

i:f“(l) = a,'.‘I:-H'l(l) -+ Z(l;j.’l:;-c(t).
i

(3)

where the superscript k is the WR iteration index, i €
{1,...,n} is the component index, and z**'(0) = zo. With
the assumnptions on A above, it is relalively simple to show
that WR is a contraclion in a sup-norm[7]. That is, given any
two arbitrary waveforms z* and y¥ which match the initial
conditions of (1), when (3) is applied to compute z**! and
y**! the following inequality holds:

sup k1) - ¥+ (0l < ysup l* @O -y o1 @

where ¥ < 1 and is independent, of z* and y*. For a general 4,
it is possible to show that the WR algorithm is a contraction
in an exponentially weighted norm, but this only implies that
the WIR iterates converge to the solution of (1) on finite time
intervals.

Assuming (3) is solved using a fixed-limestep backward-
difference formula, the so-generated discretized WR iteration
update equation becomes

>zt m 1] = hiageE  m]4+hi Y aii i, ((2F)) 5)

1=0 Jj#e



where p is the order of the integration method, the a;’s are
the integration method coeflictents, h; is the timestep used to
compute the component z;, :t:!“"1 [m] is the discrete approxima-
tion to z¥+!(mh;) which is assumed to be identically zero for
m < 0, and I; is an interpolation operator that maps t € R+
and a sequence, denoted with {-}, into ®. The discretized WR,
algorithm represented by (5) allows different timesteps to be
used to compute different components of z, but for simplicity
we have assumed that for the integration of a given component,
z;, the timestep does not change.

I the iteration in (5) converges, the resulting sequence {z}
will satisfy

r
Z azim — 1] = hjaizim] + h; Z aij Lan; ({z;})  (6)

=0 J#

for i € {1,...,n}, and this discrete system is said Lo be a mul-
tirate integration method for solving (1). Nole that the in-
terpolation operator in (6) must be chosen carefully, as the
choice can effect both the stability and accuracy of the multi-
rate method. Also, ag the result of interpolation is used only
in the calculation of approximations to #;, and is eflectively
always multiplied by the timestep, the asymptotic error of the
interpolation operator can be one order lower than the desired
order for the multirate local truncation error.

Following from the usual definition of A-stability for an inte-
gration method, we say a mullirate method of the form of (6)
is component-by-component A-stable for a given A € %™ il
the solution to

P
Z aozifm — 1] = hiaiizim) (M

=0

is such that limmn_ e zi[m] = 0 for any initial condition and
any positive h;. We say the multirate integration method is A-
stable for a given A € R™*" i for any set of positive timesteps
{h1, ..., hn} and any initial conditions
lim z;[m] =0 (8)
m-+00
for all i € {1,...,n}. Clearly, these definitions are only ap-

propriate when the matrix A is stable (has eigenvalues in the
open left-half of the complex plane).

3 Main Theorem

The following theorem, which connects WR convergence prop-
erties to multirate A-stability properties, is the main result of
this paper.

Theorem 1 A mulliraie inlegration method of the form of
(6) is A-stable for any stable A € R"*" which has negative
diagonals if the multirale method is component-by-component
A-stable, and if the iterations defined by (3) and (5) converge
on the infinite interval lo the exact solution of (1) and (6)
respectively, uniformly in t and m respeclively.

Proof of Theorem 1: The assumptions of Theorem 1
imply that both the WR and the discretized WR. algorithms
converge to the exact solutions of (1) and (6) respectively,
given any initial guess which matches the initial conditions.
Therefore, the theorem can be proved by selecting a particular
initial guess waveform and showing that starting from this
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initial guess the discretized WR iterates converge to a solution
in which
Q)

To begin, let 2°(1) = = for all t € [0,00) and z%[m] = =z,
for all m € {1,2,...,00}. Trivially,

m- 0O

lim 20(1) = 2. (10)
t—oo
Using (10) as the starting point for an inductive argument,
it is possible to show that the itcration update equation (3)
combined the assumption that the diagonals of A are negalive
imply that

(1)

exists for all k. If A is stable, then the exact solution to (1)
goes Lo zero as £ — oo, and therefore

rh(o0) = Jim 2k(0)

lim zf(c0) =0 (12)
k-—‘w
as WR is assumed to converge on the infinite interval.

It is not hard to show that il the multirate integration
method is component-by-component A-stable,

. k k
mh_l‘r;o zi [m] = z{ (c0). (13)

We omit the detailed proof of (13) for brevity, but roughly the
argument involves showing that when z¥(1) in (3) approaches
a limit, then the solution to (5) computed with an A-stable
integration method eventually approaches exactly that same
limil, regardless of the timesteps used.

Taking the limits of both sides of (13) yields
(14)

lim lim z¥[m] =0,
k-+00 m—oo
as the discretized WR iterates converge uniformly on the in-
finite interval. From this assumption it also follows that the
limits in (14) can be interchanged resulting in

(15)

lim lim zf[m] =

lim 2;m] =0
m—oo k—oo m— oo

which proves the theorem W,

4 Discretized Convergence and A-
stability Theorems

In this section we show that a multirate method which com-
bines linear interpolation with either the first- or second-
order backward difference formula is multirate A-stable for
all A € R”*" which satisly the diagonal dominance condition
in (2). To accomplish this, we prove below that our assump-
tions imply the discretized WR algorithm converges uniformly
on the infinite interval. Given such a result, Theorem 1 above
can then be applied to prove multirate A-stability.

We start the discretized WR convergence proof with the def-
inition of a specialized norm, followed by a precise statement
of this section’s main theorem.

Definition 1 Given an infinile sequence {z} on R, the quan-
ity

It = | 5 3 Gl - el ). (16)




is a norm for any positive h if the sequences considered are
restricted to those for which z[0] = 0. In addilion, if

lll{=}Hl < o0,

we say {z} has bounded variation.

(17)

Theorem 2 Let A € R™*" in (1) salisfy the condition in
(2). If lincar interpolation is used in (5), and the o;’s in
{5) correspond to the first or second-order backward difference
formula, then there exists a v < 1 such that for any lwo sels

of real sequences with bounded wariation, {z¥}, {yF}, i €
{1,..,n}, such that 2*[0] = y*[0] = =,,
e = Y, <7 max (11} - ot Yl

(18)

where z.’.‘“ and yf“ are derived from (5).

Proof of Theorem 2: Given {z*} and {y*}, the difference -

between {z**+'} and {y**+!} can be derived from (5) and is
,7
Z(néf*‘l[nr—” = ll,‘(l,‘,-él.k*‘l[nl]—{—hi Za,-jl,,,h.. ({(5;"}) (lg)
1=0 i

where 8¥[m] = z§[m] — y¥[m]. Note that the linearity of the
interpolation operator has been exploited.
Subtracting (19) at m — 1 from (19) at m yields

r
Za,(&f“[m =8 m—-1-1] =
1=0

I:;a;;(éf“[m] — 6?“ [ —1—1])

+hi ) aij (T, (165) = Tm—pns ({65)))

J#

(20)

The z-transform of (20) is

P

(ao — hiai; + Za,z“') Z(F m) — 65 m - 1)) =
1=1

I;;Za;,-

J#

Lonn, ({6k}) - ]("" 1A, ({5 })) 2]

which can be reorganized as

Z(éf“ [m] — 6:"“[771 -

» -1
(ao — hiay; + Zmz")
=1
hi > ai Z (T ({853) = Im-yns (1651)) -

It

(22)

Taking the I norm of both sides and applying the Cauchy-
Schwarz inequality leads to

l12(84* [m] -

14
(CY() — hjag; -+ Z oz

=1

6 ¥ m — 1))z <
)
+hi Y a2 (Inni ({853) = Tam—1yn, ({653)) Il

i

(23)
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Parseval’s relation then implies

S 164 ] - 85+ — 1)1 <

m=0

Mhi Y laily | D oy (1851 = Tom—ryn, ({85)) 12 (24)

j# m=0
-1
l)

By definition, §5+'[0] = 0, and thercfore can be measured
using the norm defined in (16). Equation (24) can be expressed
in terms of that norm,

N8 MM < My~ lass ) W Tmn, (1653) Hiln,.

ji

where

P
M = max (00 — h;a; + za,z_ (25)

=1
2l I=t

(20)

where here the term {lns, ({6]"})} is used, somewhat crypti-

cally, to denote the scquence whose m'* element is given b
1 g Y

Lun, ({8}})-

From Lemma 1 in the appendix, in particular from equation
(38), it follows that if I; is linear interpolation then

s ({85 3) MHace < NHEF A,

Thercfore, it is sufficient to prove the theorem to show thiat

h' E}#: Ia']l
Icm = hgaig + Y0 ezl

To sce this, consider that (27) and (28)

IllfS ;-

(27)

M = <1 (28)
forall 7 € {1,...,
mnply

n}.
85 Ml < ;

from which (18) follows directly.

To finally prove the thcorem, we need demonstrate only

that the inequality in (28) holds for the ay’s corresponding to

first- and second-order backward diflerence integration meth-

ods. To show (28) for the the first-order method, also know

as backward-Euler, we must determine that
hi 37 40 laij)

max—m
|2]= 1]1——h ai; + |

lTl ax

(29)

(30)

is less than one. As ay; is negative and real by assumption,

1
'!trlﬂznl 1 — hiai; + -l= hilail- 31)
the byl Syl
a; - lag;
max (A #i 1% < &ELE o (32)
|2|= 1|1~ha,,—|—z Ia.'.'l

as A was assumed to be diagonally dominant.
To prove the theorem for the second-order backward-
diflerence method, we need to show

hi Zj;c.' lai;]
max ) i
fel=1 |3 = hijasi — 2 + 555

(33)

This follows as before from the fact that

2 1
z 222

is less than one.

= hi|a;i]

min E — h;a;; —
lz]=1]2 e

(34)

which, finally, proves the theorem m.



5 Conclusions

In this paper we demonstrate that the WR, algorithm is not
Just an efficient numerical technique for device simulation, but
is also a useful analytic tool for analyzing multirate integra-
tion methods. The authors wish to thank M. Reichelt for
the experimental results that led to this paper, A. Elfadel for
a valnable discussion on Lemma 1, and M. Silveira and K.
Nabors for proof-reading the manuscript under duress.
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6 Appendix I - Linear Interpolation
Lemma

Using a multirate integration method implies that different
partitions of a system are integrated with different timesteps,
and therefore variables computed in one partition and used in
another must be somehow translated. The translation used
in the algorithms presented above can be thought of as first
interpolating the discrete representation of the variable into a
continuous function of time, and then evaluating that contin-
uous function at times associated with the timesteps in other
partitions. In this way, the discrete sequence computed in one
partition can be converted into a discrete sequence usable by
another partition.

In this appendix, we prove that if linear interpolation is
used, then the translation process described above doesn’t
magmfy a particular norm on the discrete sequence, given a
scaling. In partlcular we will show that il {z} is the sequence
computed using a fixed timestep h,, and {y} is the sequence
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produced by translating {=} with lincar interpolation so as to
use the fixed timestep hy, then

%Z( ] ~yln - 1))° < ;—l‘ Z (efm] — zpn ~1))* (35)

The formal statement of the Lemma follows.

Lemma 1 Given a sequence {z}:0,1,2,...— R for which

Z (z[m] — z[m - 1))? < oo, (36)
m=]
let the sequence {y) be derived from {z} by
vln) = yal] + (1 = y)efin - 1], (37)

where m = ceil(nr), v = nr — (m ~ 1), and r is an miblrnry
positive number (Nole that in (35), r would be given by 7;1)
For any r € R*, {y} satisfies the following inequality:

Sl —yln =17 < v 3 (alm] — ol — 1))

n=l m=1

(38)

Proof: Let z : [0, 00) — R be a a continuous and differentiable

function defined by
z(l) = yz[m] + (1 — y)z[m - 1] (39)

where m = ceil(t), y =t — (m — 1). Then by definition,

oo d R 9
/0 ((lt (I)) = "2::1 (z[m] — z[m ~1]) (40)
and
y[n] = z(nr) (41)
Given (41) and that z is differentiable,
(vl] = ol — 1)) = [ JAE ))] (12)
(n—1)r i
It can be derived from Schwarz’s inequality that
2
nr d nr d 2
—x(t))] <r [ L (G=0) | e
[[yt—l)r (dt (n—l)r dl
and therefore
nr d 2
(yin] — y[n — 1])2 =<r / —z(1) . {44)
(n—1)r \d!

Summing (44) over n leads to

Z (win) —yln—-1))’ < r Z [/(’nr

n-i)r

(5=0) } (45)

(,szx(t)) ] = ,,,Zl (zlm] = a[m - 1))", (46)

this proves the lemma |,

and as

o0
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