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Abstract

Several improvements to the multipole-accelerated 3-
D capacitance extraction program described in [1] are
presented in this paper. A new adaptive multipole
_ algorithm is given, and a preconditioning strategy for
accelerating iterative method convergence is described.
Results using these algorithms to compute the capaci-
tance of general three-dimensional structures are pre-
sented, and they demonstrate that the modified ap-
proach is nearly as accurate as the more standard di-
rect factorization algorithm, and can be as much as
two orders of magnitude faster.

1 Introduction

In the design of high performance integrated cir-
cuits and integrated circuit packaging, there are many
cases where accurate estimates of the capacitances of
complicated three dimensional structures are impor-
tant for determining final circuit speeds or function-
ality. In these problems, capacitance extraction is
made tractable by assuming the conductors are ideal,
and are embedded in a piecewise-constant dielectric
medium. Then to compute the capacitances, Laplace’s
equation is solved numerically over the charge free re-
gion with the conductors providing boundary condi-
tions. The usual numerical approach is to apply a
boundary-element technique to the integral form of
Laplace’s equation[2] as in

P(z) = / - G(z,z")o(z')da’ (1)

where o is the surface charge density, z,z’ € 23, ddo’
is the incremental surface area, ¥ is the surface poten-
- tial and is known, and G(z, z') is the Green’s function
which in free space is =
To numerically solve (1) for o, the conductor sur-

faces are broken into n small panels or tiles. It is as-
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sumed that on each panel k, a charge, ¢, 1s uniformly
distributed. Then for each panel, an equation is writ-
ten that relates the potential at the center of that k**
panel, denoted pg, to the sum of the contributions to
that potential from the n charge distributions on all n
panels[3]. The result is a dense linear system,

Pg=7p (2)

where P € R"*" is the matrix of potential coefficients;
g, P € RN" are the vectors of panel charges and given
panel potentials respectively, and
1 1 '
Pu=—= —— dd, (3)
a1 Jpanel “:l: —Z‘k”

where z; is the center of the k** panel and a; is the
area of the {** panel.

The dense linear system of (2) can be solved to com-
pute panel charges from a given set of panel potentials,
and the capacitances can be derived from the panel
charges. If Gaussian elimination is used to solve (2),
the number of operations is order n3. Clearly, this
approach becomes computationally intractable if the
number of panels exceeds several hundred, and this
limits the size of the problem that can be analyzed to
one with a few conductors.

In [1], a fast algorithm for computing the capac-
itance of three-dimensional structures of rectangular
conductors in a homogenous dielectric was presented.
The computation time for the algorithm, which was
based on the hierarchical multipole algorithm [4], was
shown to grow nearly as mn, where n is the number of
panels used to discretize the conductor surfaces, and
m is the number of conductors. In this short paper,
we briefly describe several improvements to that algo-
rithm and present computational results '6n a variety
of examples to demonstrate that the new method is ac-
curate and can be as much as two orders of magnitude
faster than standard direct factorization approaches.

In the next section, we briefly describe an adap-
tive multipole scheme that improves the efficiency of
the multipole approach, and in Section 3 we present
a preconditioner which accelerates GCR convergence
and fits naturally with the multipole algorithm. Ex-
perimental results using our program FASTCAP to
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analyze a wide variety of structures, made possible by
a link to the M.I.T. Micro-Electro-Mechanical Com-
puter Aided Design (MEMCAD) system [5], are pre-
sented in Section 4.

2 The Hierarchical Multipole
Algorithm

A complete description of the hierarchical multipole
algorithm is not. given here, the original description is
in [4], and its application to capacitance extraction is
described in [1]. Instead we describe the expansion ap-
proximation and examine a simplified two-dimensional
example which both exhibits the method’s salient fea-
tures, and motivates the adaptive algorithm and the
preconditioner described in subsequent sections.

2.1 Multipole Expansions

Multipole expansions are often used to approximate
the far field due to a confined charge distribution. For
example, consider evaluating the potential p; at a the
center of a panel i, (r;, ¢;,6;), due to a collection of d
distant panels, as in Figure 1. The potential due to
the surface charges on those d panels is given approx-
imately by the truncated multipole expansion

¢(r,,¢,,o)~z Z ,,+1Y"‘(¢., 6:) (4)

n= Om——n

where the spherical coordinates of the evaluation lo-
cation are measured relative to the origin of the mul-
tipole expansion, Y,*(¢;, ;) are the surface spherical
harmonics, M[* are the multipole coefficents deter-
mined from the panel charges, and [ is the expansion
order.

Given the multipole coefficients, the same multipole
expansion can be used to quickly, but approximately,
evaluate the potential at many panel centers. For ex-
ample, in Figure 1, there are d charged panels, and d
panel centers for which the potential must be evalu-
ated. A direct calculation of those potentials requires
order d? operations, but only order d operations are
needed if the multipole expansion is used (assuming
the expansion order [ is fixed).

In the Figure 1 case, the error due to truncating the
multipole expansion is bounded [4], as in

(r,,¢.,0)—z }: ,,:',IY'" $4,05)

n=0m=—n i

41
.

(8)

_—d evaluation.pgints

®= multipole expansion

Figure 1: The evaluation of the potential at (r;, ¢;, 6;).

The quantities r and R are as in Figure 1 and K is
a constant independent of the multipole expansion or-
der, I. The bound indicates that the multipole poten-
tial evaluations converge increasing rapidly with ex-
pansion order as the minimum distance between the
panel charges and the evaluation points increases. In
order to ensure that the error bound in (6) tightens
sufficiently with each increase in expansion order [,
the hierarchical multipole algorithm uses a multipole
expansion to represent the effect of charge in a region
only if the radius of the region is less than half the dis-
tance between the region’s center and the evaluation
point.

2.2 Two-Dimensional Example

The aggregation of distant panels into multipole ex-
pansions which can be used to evaluate potentials at
many panel centers is the source of the hierarchical
multipole algorithm’s efficiency. Maintaining this ef-
ficiency for general distributions of panels while con-
trolling error is insured by exploiting a hierarchical
partitioning of the problem domain, the problem do-
main being defined as the smallest cube containing all
the conductors.

Consider, for example, evaluating the potential at
some point (r;, ¢;, 6;) in Figure 2 due to panel charges
inside the illustrated problem domain. A first par-
titioning would be to break the problem into four
smaller squares, leaving (r, ¢;,0;) somewhere in the
lower left square (Figure 2b)!. To insure that the er-
rors due to truncating the multipole expansion shrink
rapidly with expansion order, multipole expansions
will not be used to represent the charges in squares
1, 2 and 3, when evaluating the potential at points in
the lower-left square, because Ry /r;, Rp/r2 and Ra/ra
in Figure 2b are all greater than 0.5.

Squares 1, 2 and 3 are each divided into four squares,

11n the three-dimensional problem, the equivalent partition-
ing would be to divide a cube into eight smaller cubes.
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Figure 2: The evaluation of the potential at (r;, ¢;, 6;).

as in Figure 2c, to produce smaller regions which can
possibly satisfy the criteria for representation by a
multipole expansion. In fact, many of the smaller
squares do satisfy the criteria, as can be seen by ex-
amining the illustrated case, for which R/r is less than
0.5. Thus, at the end of this partitioning step, all the
charges in the squares marked with an M in Figure 2c
will be represented with a multipole expansion when
evaluating the potential at points in the square con-
taining (r;, ¢, 6;).

So that multipole expansions can be used to repre-
sent the potential due to panel charges contained in
the unmarked squares of Figure 2c, these squares are
partitioned further, as in Figure 2d. Then, as before,
the distance criteria implies that multipole expansions
can be used to represent the panel charges in all but
a few squares near the square containing the evalu-
ation point. If it is determined not to partition any
further than is indicated in Figure 2d, the potential
pi, at (ry, ¢4, 6;), can then be computed by summing a
“near” or direct term and a “far” or multipole term.
That is, the “near” contribution to p; is due to panel
charges in the nine unmarked squares in Figure 2d, and
is computed directly from P;jq; products. The “far”
contribution to p; is due to distant panels charges and
is determined by evaluating the 25 mulitpole expan-
sions indicated in Figure 2d. In the next section, we
will refer to the list of squares associated with those
25 multipole expansions as the multipole list for the

square containing (r;, ¢;,6;).

The above example suggest that evaluating n po-
tentials requires order nlogn operations. The hierar-
chical multipole algorithm given in [4], and used in the
FASTCAP program described below, is more sophisti-
cated than the above approach suggests. In particular,
multipole evaluations are efficiently combined into lo-
cal expansions in such a way as to reduce the number
of operations to order n. However, for purposes of de-
scribing the adaptive algorithm and the precondition-
ing techniques below, the simplified algorithm above
is sufficiently detailed.

2.3 The Adaptive Algorithm

An adaptive multipole algorithm can be derived from
the simplified approach described in Section 2 if the
potential due to panel charges in a cube are always
evaluated directly, rather than with a multipole ap-
proximation, whenever the number of expansion coef-
ficients would exceed the number of panels. A more
precise definition of the computational procedure is
given in Algorithm 2 below, which uses some notation
which we now introduce.

The cube which contains the entire collection of pan-
els for the problem of interest is referred to as the level
0 cube. If the volume of the cube is divided into eight
equally sized child cubes, referred to as level 1 cubes,
then each has the level 0 cube as its parent. The panels
are distributed among the child cubes by associating
a panel with a cube if the panel’s center point is con-
tained in the cube. This process can be repeated to
produce L levels of cubes, and L partitions of panels
starting with an 8-way partition and ending with an
8L-way partition. The number of levels, L, is chosen
so that the maximum number of panels in a finest, or
L', level cube is less than some threshold (nine is a
typical default). A neighbor of a given cube is defined
as any cube which shares a corner with the given cube
or shares a corner with a cube which shares a corner
with the given cube (note that a cube has a maximum
of 124 neighbors). Finally, in the algorithm below it
is assumed that for each lowest-level cube, a multipole
list has been constructed using a recursive approach
similar to that given in the two-dimensional example
above. -

Alg. 2: Adaptive Algorithm to Compute p = Pq
Comment: Compute potential due to nearby charges.
for each lowest-level cube i = 1 to 8% {
for each panel j in lowest-level cube ¢ {
Set p; = 0.
for each panel k in cube i or its neighbors {
} Add F‘jqu to p;.

}
}

Comment: Compute multipole coefficients from g
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Comment: order is the expansion order.
for each level j =L to 2 {
for each j*"_level cube i =1 to 87 {
if cube ¢ has more than (order + 1)? panels {
Compute the multipole coefficients from
panel charges and/or from coefficients of
any child cube multipole expansions.

}
}
Comment: Compute potential due to distant panels.
for each lowest-level cube £ = 1 to 8% {
for each cube j in cube i’s multipole list {
if cube j has more than (order + 1) panels {
for each panel k in cube ¢ {

Evaluate the expansion for cube j
at (Tk, ¥k, 2x ) and add to pg.

else {
for each panel k in cube i {
for each panel I in cube j {
Add Pyq; to pj.

3 Preconditioning

In general, the GCR iterative method applied to solv-
ing (2) can be significantly accelerated by precondi-
tioning if there is an easily computed good approxima-
tion to the inverse of P. We denote the approximation
to P~ by €, in which case precondntlomng the GCR
algorithm is equivalent to using GCR to solve

PCz =7. (6)

for the unknown vector z, from which the charge den-
sity is computed by ¢ = C:c Clearly, if C is precisely
P~1, then (6) is trivial to solve, but then C will be
very expensive to compute.

Below we give an approach to estimating P~! for a
general configuration of panels which fits with the hier-
archical multipole algorithm in that the preconditioner
C can be constructed and applied in a cube-by-cube
fashion. The preconditioner is formed by inverting a
sequence of reduced P matrices, one associated with
each cube, as in Algorithm 3 below

Alg. 3: Forming C.

for For each lowest-level cube i == 1 to 8% {
Form P!, the potential coefficient matrix for the
reduced problem derived from considering only the
panels in cube ¢ and cube ¢'s neighbors.
Compute & = (P)~1,
for each panel k in cube ¢ or cube i’s neighbors {

if panel k is not in cube i {
delete row k from C*.

}

Note that C? is not a square matrix and that
8L
Z(# rowsin C')=n )

i=1

where again n is the total number of panels By com-

‘paring Algorithm 3 with Algorithm 2, it is clear that

P’ uses only those elements of the full P matrix which
are already required in Algorithm 2, and therefore the
computational cost in computing the preconditioner is
only in inverting small P* matrices. Then computmg
the product PCz*, which would be used in a GCR
algorithm applied to solving (6), is accomplished in
two steps First, the preconditioner is applied to form
= Cz* usmg Algorithm 4 below. Then, Pq*
computed using Algorithm 2 in the previous sectlon.
Algorithm 4: Forming ¢ = Cz.
for each lowest-level cube i =1 to 8% {
for each panel j in lowest-level cube i {

for each panel k in cube { or its neighbors {
Add &¢ 1Tk to qj.

}
}
}

4 Experimental Results

In this section, results from computational experi-
ments are presented to demonstrate the efficiency and
accuracy of the preconditioned, adaptive, multipole-
accelerated (PAMA) 3-D capacitance extraction algo-
rithm described above. In particular, the program
FASTCAP, which can use both direct factorization
and multipole-accelerated techniques, has been devel-
oped and incorporated into MIT’s MEMCAD (Micro-
Electrical-Mechanical Computer-Aided Design) sys-
tem [5]. The structures described below were created
with the solid modeling program in the MEMCAD
system, PATRAN, or by computer program, and all
capacitance calculations were performed using FAST-.
CAP. The multipole-accelerated algorithms in FAST-
CAP use, by default, second-order multipole expan-
sions and a GCR. convergence tolerance of 0.01.

That the PAMA algorithm is nearly as accurate as
the direct factorization is demonstrated using the 2x2
woven buss structure in Figure 3. The capacitances
computed using the two methods are compared in Ta-
ble 1, using coarse, medium, and fine discretizations
of the woven buss structure, also shown in Figure 3.
Note that the coupling capacitance Cj2 between con-
ductor one and two, which is {0-times smaller than
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2 x 2 wovenl

2 x 2 woven?2

2 x 2 woven3

(b)

B~ Figure 3: The 2 x 2 woven bus problem: bars have
- 1mx 1m cross sections. The three discrétizations are
£ obtained by replacing each square face in (a) with the
;" corresponding set of panels in (b).

Method Problem

Wovenl Woven?2 Woven3
1584 Panels | 2816 Panels | 4400 Panels
Ciy| Ci2 [ Ciy | Ci2 | Cii | Cr2
Direct 251 -6.35 253 | -6.45 254 -6.47
PAMA 251 -6.25 253 | -6.33 254 -6.38

Table 1: Capacitance values (in pF) illustrating FAST-
CAP’s accuracy for the complicated geometry of Fig-
ure 3.

(¥ of conduciors) 3 (¥ of pancls) =104

Figure 4: Plot of CPU Time vs mn for the woven-buss
example. The dashed line is the best constant-slope
fit to the data indicated with *’s.

the self-capacitance, is computed nearly as accurately
with the PAMA algorithm as with direct factorization.

The computational cost of using the FASTCAP pro-
gram is roughly proportional to the product of the
number of conductors, m, and the number of panels
n. This is experimentally verified using a parameter-
ized version of the woven bus structure in Figure 3,
that is, the structure is extented to make a 3 x 3 buss,
a4 x 4 buss and a 5 x 5 buss. In Figure 4, the CPU

Figure 5: Two signal lines passing through conducting
planes; via centers are 2mm appart.

Figure 6: A schematic illustration of the square di-
aphragm problem. The two plates are 0.02um appart
at the center.

times for computing the capacitances of the woven bus
structures are plotted as a function of mn, and as the
graph clearly demonstrates the computation time does
grow linearly.

To demonstrate the effectiveness of various aspects
of the PAMA algorithm on several problems, in Ta-
ble 2 the CPU times required to compute the capaci-
tances of three different examples using four different
methods is given. The example 5 x 5 Woven buss is
described above; the example Vie, shown in Figure 5,
models a pair of connections between integrated circuit
pins and a chip-carrier; and the example Diaphragm,
show in Figure 6, is a model for a microsensor(6).

From Table 2, it can be seen that using the adaptive
multipole algorithm typically reduces the computation
time by a factor of two over using the multipole al-
gorithm alone, and that using the preconditioner can
reduce the computation time by as much as a factor
of three. Also, note that the PAMA algorithm is more
than two orders of magnitude faster than direct meth-
ods for these large problems.

5 Conclusions

As the results indicate, the multipole-accelerated ca-
pacitance extraction algorithm, with the above modifi-
cations, is capable of quickly and accurately analyzing
very complex structures. Current work is on extending
the approach to allow piecewise constant dielectrics.
The authors would like to thank David Ling and
Albert Ruehli of the I.LB.M. T. J. Watson Research
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Method Via Diaphragm | 5x5 Woven Bus
6185 Panels | 7488 Panels 9630 Panels

Direct (490) (890) {1920)

MA 11 11 40

AMA 3.8 9.0 19

PAMA 3.1 3.0 12

Table 2: CPU times in minutes on an IBM
RS6000/540 to compute, times in parentheses are ex-
trapolated.

Center for the many discussions that led to the ap-
proach presented here, as well as their help along the
way, and Brian Johnson for providing several exam-
ples. In addition we would like to acknowledge the
help of the members of the M.I.T. custom integrated
circuits group.
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