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Abstract

A new surface integral formulation and discretization approach for computing elec-
tromagnetoquasistatic impedance of general 3-D conductors is developed. The key ad-
vantages of the formulation is that it avoids volume discretization of the conductors and
the substrate, and a single discretization is accurate over the entire frequency range. In
addition, the approach does not require a-priori information about proximity effects or
the low frequency ditribution of the currents, and the formulation is based on surface
integral equations applicable to general 3-D structures.

Computational results from a ring, a wire, an on-chip spiral inductor, a multipin
connector and a transmission line examples verify that the formulation is accurate when
the predconditioned GMRES iterative method is used to solve the discretized equations -
for MQS and EMQS analysis. Furthermore, when the O(N?) part of the matrix-vector
multiplication of the iterative solver is accelerated with the Precorrected-FFT algorithm,
a fast algorithm with close to O(N) performance in both CPU time and memory is

developed.
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Introduction

1.1 The need for inductance and capacitance extrac-
tion

The inductance and capacitance can be important parameters of a system, wanted
or unwanted. In the interconnect and packaging problems, the existence of the parasitic
inductance and capacitance can change the performance of the system greatly, so that it
is vefy important to extract these parasitics. It is even more important to extract the
inductance and capacitance accurately where the system is based solely on the inductors

and capacitors, as in some MEMS devices and in the use of spiral inductors in RF circuits.

1.1.1 The interconnect problem

In the early days of the semiconducfor circuits, the speed bottleneck was at the de-
vices, while the interconnect connecting the devices could be taken as ideal connection
with no parasitic effects. When the devices are running at low frequencies, the propa-
gation delay and the waveform deformation caused by the interconnect are negligible so
that the parasitic inductance and capacitance can be ignored. However, the interconnect
problem is getting more and more serious as the semiconductor devices are running at

higher and higher frequencies. Recently the operation frequency of the semiconductor

21



circuits can be close to one gigahertz, and the parasitic resistance, inductance and capac-
itance effects of the interconnect can change the performance of a circuit significantly.
It is well known that the parasitic capacitance and resistance effects of the inter-
connect can cause propagation delay [24], while the coupled inductance and capacitance
effects of the interconnect can not only change the propagation delay but also introduce
ringing behavior [24], and this influences signal integrity. In addition, the coupling be-
tween the interconnect and the substrate introduces noise in the signal [27] and so does
the coupling between the nearby interconnect wires. In the frequency domain, the cou-
pled inductance and capacitance effects can create resonance peaks in the interconnect
frequency response [37], and the substrate coupling tends to reduce the inductance sig-
nificantly at high frequencies. To account for these parasitic effects, extraction tools are

necessary.

1.1.2 The packaging problem

In the packaging problem, inductance and capacitance effects are also very important
to the performance of the system. Figure 1-1 shows an RF packaging system. Accurate
resistance, inductance and capacitance extraction is essential for reliable circuit simula-

tion [37]. Figure 1-1 also comes from [37].

FIGURE 1-1: The packaging example of Harris Semiconductor
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1.1.3 Useful “parasitics”

Although inductance and capacitance effects are taken as unwanted parasitic effects
in the interconnect and packaging cases, MEMS devices sometimes rely on the inductance
and capacitance of the conductors.

In Figure 1-2 the spiral inductor can be used as a proximity sensor to measure the
distance from a ground plane. The underlying mechanism is that the inductance of the

spiral inductor changes sharply with the distance from the ground plane.

FIGURE 1-2: A proximity sensor

Surprisingly, the problem is very similar to the substrate coupling noise problem in the
case of on-chip interconnect analysis. The only difference is that the substrate coupling
is unwanted in the on-chip interconnect cases while it is used in the MEMS device.

Inductance and capacitance extraction is also very important to the modeling of spiral
inductors in RF circuits [34]. The increase of effective inductance due to the inductance-

capacitance coupling‘playsl an important role in the performance of RF circuits.
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1.2 Previous work on inductance and capacitance

extraction

1.2.1 3-D Capacitance extraction methods

Since the structures for capacitance extraction are mostly complicated 3-D geometries,
3-D capacitance extraction methods have been developed that are based on the surface

integral equation that relates the scalar potential to the charge on the surface

[.6(@5)2dy = p(a)

where S is the surface of the conductor, p is the charge density, 9 is the potential on
the surface, ¢ is the permittivity, and G(z,y) is the Green’s function. This integral
equation follows from the Laplace equation for the scalar potential inside and outside the
conductors and the fact that the charge is just on the surface. Starting from the surface
integral equation, the boundary element method is used to solve for the capacitance
20, 21].

In typical applications, large number of unknowns are encountered, and this makes
the direct solution of the linear system very costly. The direct solution of the linear
system requires O(N?®) CPU time and O(N?) memory.

Fortunately, fast methods have been developed for capacitance extraction (16, 17,
11} in the last decades that get close to O(N) performance both in CPU time and
memory, by using iterative solving methods such as GMRES [13} and matrix éparsiﬁcation
techniques such as the fast multipole algorithm [7], the Precorrected-FFT algorithm (8],
SVD algorithm [10] and wavelet based methods [11].

The GMRES iterative method reduces the O(NN?3) operations of Gaussian Elimination
to a small number of matrix vector multiplications, and each matrix vector multiplica-
tion requires O(IN?) operations. Matrix sparsification methods accelerate the matrix
vector multiplication reducing the number of operations from O(N?) to near O(N). Al-

though the fast multipole algorithm is utilizing the Green’s function kernel of the Laplace
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equation so that the method is not applicable to general kerneIs,A the Precorrected-FFT
algorithm, SVD algorithm, and wavelet based methods can be used as general matrix
sparsification schemes.

The number of GMRES iterations is another factor that can affect the performance
of the fast methods. The second kind integral formulation [15] of the Laplace equation

improves the conditioning of the linear system and reduces the number of iterations.

1.2.2 Inductance extraction methods
1.2.2.1 Volume methods

Inductance extraction is much more complicated than the capacitance extraction. In
capacitance extraction, a very special case of the electrostatistics field is analyzed in
which there is neither current nor magnetic field, so that the potential can be specified
on the surface to solve for the charge distribution. In inductance extraction, however,
the coupled electrical and magnetic field have to be analyzed at the same time, which
requires the solution of Maxwell’s equation.

Since the current is nonzero everywhere in the volume in the inductance problem,.
volume based methods have been developed [22, 23, 25, 26]. The PEEC method intro-
duced in [23] has gained the most popularity, probably because it is applicable to a wide
range of problems.

These volume based methods still have the disadvantage of using direct solution of
the linear systems, which is costly both in CPU time and memory. FastHenry, a fast
version of PEEC, is developed in [18]. Similar to FastCap, FastHenry combines GMRES
iterative solver and fast multipole matrix sparsification technique. FastHenry has the

performance of close to O(N) in both CPU time and memory.

1.2.2.2 Advantages of surface methods for inductance extraction

The advantages of surface methods for inductance extraction can be shown in con-

sidering the following problems:
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1. The high frequency problem:

The volume based methods have to use very fine discretizations to handle high
frequency problems because skin effect drives the current to the surface of the
conductor. This makes the volume method very costly at 'high frequency [18], and

causes anomalies in some cases [19].

2. Model order reduction(MOR):

Model order reduction [35, 36] generates a much smaller compact model of the
original system. The different requirements of discretization for volume methods
at low frequency and high frequency leads to one dense discretization for the whole
frequency range being used for model order reduction [37]. Hence for model order

reduction, surface methods seem to be appropriate.

3. The ground plane problem:

In cases when a non-ideal ground plane is present, the proximity effect can change
the iﬁductance of the structure above the ground plane to a great extent. To
simulate the proximity effect of the ground plane, a dense 3-D mesh needs to be
used [27]. Figure 1-3 is just a coarser version of the actual mesh of the ground
plane. If a surface method is used, only the surface of the ground plane must be

meshed, reducing the number of unknowns.

FIGURE 1-3: A coarse 3-D discretization of the ground
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4. Curved structures:

Even though PEEC and FastHenry are applicable to 3-D problems, the discretiza-
tion of the volume of a curved structure can be very difficult. If a surface method

is developed for general 3-D structures, the discretization would be much easier.

1.2.2.3 Existing surface methods of inductance extraction

Although various surface methods have been proposed, most of them are limited to
the high frequency inductance extraction of 2-D transmission line problems.

Djordjevic and Sarkar {28] analyzed a cylindrical conductor excited by an axially in-
dependent TM electromagnetic field. A nonphysical distribution of current was assumed
along the propagation direction, causing an excess resistance at high frequencies. Wu
and Yang [30] modified this method to allow quasi-TEM propagation. Tusk and Kong
[31] developed a surface method for inductance and resistance extraction of transmission
lines at high frequency under the MQS assumption. Neikirk et al [29] developed a surface
ribbon method for inductance extraction of interconnect using surface impedance.

All of these surface methods have difficulties at low frequency. Surface methods in
(28], [30] and [31] are based on the normal derivative of the electrical field, and this
creates numerical difficulty because the normal derivative of the electrical field is close to
zero at low frequency. Take [31] for example, the basic relation to compute the current

18:
) oJ, dl

I=
wpo JL On

At very low frequency, %’—, should be O(w) because the denominator is O(w). This means
the numerical error in computation of %{;1 can easily corrupt the accuracy of I.

The method in [29] based on surface impedance assumes that the electrical field takes
exponential form in respect to the distance from the surface. This assumﬁtion is based
on 1-D high frequency analysis and is not accurate at low frequencies. In addition, the
surface impedance is defined as the ratio of the total electrical field to the total magnetic

field, so that numerically the ratio could blow up at low frequency because the magnetic
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field could be vanishingly small while the electrical field rémains substantial at very low
frequency.

In addition to the low frequency problem, these surface methods have other restric-
tions. Methods in [28] and [30] are using TM and quasi-TEM assumptions, which are not
necessarily true for general 3-D fields. The method in [31] only has MQS assumption,
but it is limited to 2-D transmission line problems. The method in [29] is also limited to

2-D interconnect problems.

1.2.2.4 The difficulties of inductance extraction using surface methods.

From the review in the preceding paragraphs, it is clear that none of the existing
surface methods of inductance extraction can be applied to general 3-D structures at
both low and high frequencies.

The biggest challenge of a general surface method comes from the low frequency
problem. With the current spread over all the volume at the low frequencies, a surface
method has to account for the contribution from the volume current by the surface
quantities. The surface representation of the volume field needs to be achieved without -
assumption of the field distribution so that the surface method can be used for the
inductance extraction at any frequency. This is also necessary for the proximity effect to
be captured with the surface formulation, because the proximity effect changes the field
distribution.

Another challenge of a genefal surface method is that the assumption related to the
geometry should be abandoned. For example, the assumption that the vector potential
satisfies Laplace equation [31] is only valid for 2-D transmission line and it should not
be used for general 3-D geometriés. The assumption that the electrical field takes the
exponential form in respect to the distance from the surface [29] should not be used for
general 3-D geometries either, because the assumption is based on 1-D high frequency
analysis. The surface representation of the volume field should be achieved without any
assumption of the geometry so that the surface method could be used for general 3-D

structures.
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1.3 The need of coupled inductance and capacitance
analysis

To get the frequency response of a structure, the lumped inductance and lumped
capacitance are usually extracted separately, and then combined in a circuit model.
This approach is based on the assumption that the inductance and capacitance can be
decoupled in the solution of Maxwell’s equation. However, it is unclear if this assumption
is always correct.

A safe way to get the frequency response of a structure is to solve Maxwell’s equation
making as little assumption as possible so that the inductance, the capacitance and
the resistance are considered at the same time. Since the dimension of the sturctures is
normally smaller than the wavelength, the electromagnetoquasistatic(EMQS) assumption
can be made to simplify Maxwell’s equations. The impedance extracted under the EMQS

assumption is the distributed RLC impedance.

1.4 The new surface formulation

A volume method of EMQS impedance extraction is developed in [32]. As a surface
method can have many advantages over volume methods in inductance extraction, a
general surface formulation for EMQS impedance extraction can also have advantages in
handling the high frequency problem, modeling of the proximity effect of a ground plane,
generating inexpensive frequency independent discretization for MOR and requiring little
effort in the discretization of a curved structure.

At the same time, the difﬁcultieé of surface methods for inductance extraction are also
inherited by the surface methods for EMQS impedance extraction. The key difficulty is
to find a general surface representation of the volume current without an assumption of
current distribution or the geometry of the structures.

In this thesis, a new surface formulation of distributed RLC(EMQS) impedance ex-

traction for 3-D structures is developed which overcomes the difficulties of the surface
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methods mentioned above. The new surface formulation can perform EMQS impedance
extraction for general 3-D structures at both low frequencies and high frequencies.

The new surface formulation overcomes these difficulties with two dyadic surface
integral equations that relate the electrical field to the scalar potential, and a surface
integral form of V- £ = 0.

These two dyadic surface integral equations are directly derived from Maxwell’s equa-
tions so that they are applicable to general 3-D structures and arbitrary frequencies. The
surface integral form of V - £ = 0 is also applicable to general structures.

When the charge density is set to zero, the surface formulation can be used to perform
MQS impedance extraction so that the inductance and resistance of the structure can be
computed.

In Chapter 2, a ‘circuit analogy is made for the impedance extraction, so that the
ﬁecessary steps toward a surface formulation for impedance extraction can be clearly
identified. It is shown that two basic volume-based relations need to be transformed into
surface forms, one is —V4¢ = E + iwA, another is V- E = 0.

In Chapter 3, two daydic surface integral equations are derived directly from Maxwell’s
equations that relate the electrical field and its normal derivative to the gradient of the
scalar potential. The first surface integral equation captures the skin effect for general
3-D structures. Actually, the first surface integral equation is a special case of a surface
integral equation that relates the electrical field of any point inside a conductor to the
electricai field and its normal derivative on the surface. The second dyadic surface in-
- tegral equation is a direct transform of —~V = E + iwA to the surface form, with the
normal derivative of electrical field introduced which can be eliminated along with the
first dyadic surface integral equation. The surface integral form of V - E = 0 is derived
by taking the limit of a thin box right underneath the surface.

In chapter 4, the discretization of all of the equations are discussed, along with the
correct boundary conditions to be applied at the contact and non-contact panels.

In chapter 5, the low frequency numerical problem is explained and eliminated by lin-

earization. The high frequency problem due to the skin effect is solved by computing the
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input current with the magnetic field nearby, which can be translated into the derivative
of the electrical field.

Chapter 6 shows an efficient numerical scheme to compute the panel integration of the
Helmhotz kernel and its derivative. The integration of the linearized kernel is also covered.
A numerical scheme is described which eliminates the singularity with a transformation,
and reduces the 2-D integration into 1-D integration for efficient computation with a
Gauss quadrature scheme.

In chapter 7, validation of the preconditioned GMRES iterative solver is presented
using various examples. Both MQS and EMQS impedance extraction is performed, and
the results are compared with analytic results and the results from FastHenry. The
compariéon shows that the formulation gives satisfactory results. It is also shown that a
cheap preconditioner reduces the iteration number greatly.

In chapter 8 the surface formulation is accelerated further by computing the potential
evaluation part of matrix vector multiplication with the Precorrected-FFT algorithm.
After the acceleration, the surface formulation has the performance of close to O(N) in
both CPU time and memory.

In chapter 9, an extension to fullwave impedance extraction is described. With the
example of a shorted transmission line, it is shown that the fullwave impedance extraction
of the surface formulation yields accurate results compared with those from analytic
formula.

Conclusions and suggestions for future work are included in chapter 10.
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The circuit analogy of impedance
extraction

2.1 The circuit analogy of impedance extraction

Impedance extraction for a certain structure (Figure 2-1) consists of determining
the voltage and current relation at the two terminals ( ports, or contacts) at a certain
frequency. Typically, the voltage drop V ( or potential difference 9, — 4_) is specified
between the two contacts (Cy and C_), so that the current I( or electrical field E) can

be computed by solving Maxwell’s equations.

+1
A

FIGURE 2-1: A simple example of impedance extraction

The problem resembles the nodal analysis of a circuit when a voltage source is applied
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between two terminals and the input current is to be solved.

The volume based MQS impedance extraction program FastHenry [18] exploits the
similarity to a further extent. There are two basic equations used in FastHenry, one is
—V¢ = E+iwA, the other is V- E = 0. The first equation can be taken as the equivalent
to the constitutive relationship in nodal analysis, while the second equation is equivalent
to the current conservation law in circuit theory.

Due to the similarity between the equations used in FastHenry and the circuit analysis
equations, the impedance extraction problem of the wire in (a) of Figure 2-2 is converted
to the circuit analysis problem in (c) of Figure 2-2 through the discretization shown in

(b) of that figure. The figure comes from [37].

(b)

uf
:am_
il

‘—I l"— —| }——- Filament branch
I I - Node
_.D_l O Source branch

FIGURE 2-2: The conversion of impedance extraction to circuit analysis

2.2 The difficulties of a surface formulation

Any surface formulation faces two major difficulties if the circuit analysis analogy is

to be exploited.
1. It is difficult to transform the constitutive relationship of =V = E + iwA to a
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surface form.

The difficulty comes from the fact that A is has a contribution from the currents
over all the volume of the conductor. A general transformation needs to be found
that can change the volume equation to a surface equation that is valid for any

frequency and general 3-D structures.

2. Tt is also difficult to change the volume equation V - E = 0 to a surface equation.

In the next chapter, two dyadic surface integral equations are derived that can play
the role of the constitutive relationship, while the current conservation equation is also
changed to a surface integral form.

Unlike the constitutive equation or current conservation equation, the equation relat-
ing the scalar poteiitial to the charge is naturally a surface equation because the charge

is only on the surface at time harmonics, as will be shown in the next chapter.

2.3 The impedance extraction for multiple conduc-

tor cases

For M conductor cases (Figure 2-3), the mutual impedance should also be extracted.
The extraction is the determination of the impedance matrix Z, which relates the voltage

vector V to the current vector I by:

C. C. C_

(H H H

Vi V2 Vu

FIGURE 2-3: Multiple conductor impedance extraction
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ZI=V

By applying M linearly independent voltage vectors, M current vectors can be com-
puted. If these voltage vectors are written as matrix My with every column a voltage
vector, and the current vectors are written as matrix My in the same way, the equation

about Z can be written as:

M = My

Then the impedance matrix can be solved as:

Z = Mijal .
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The new surface formulation for
EMQS impedance extraction

In impedance extraction, the electrical field around the contact where the potential
is applied must be solved. The constitutive relation —V¢ = FE + iwA and current
conservation are essential in the solution. This chapter gives the surface version of these

basic equations, and describes the appropriate boundary conditions.

3.1 EMQS analysis for the time harmonic electro-

magnetic field

3.1.1 The time harmonic Maxwell’s equations

Consider the electromagnetic field for the multiple conductor example in Figure 3-1.
It is assumed that the permeability u and the permittivity e are constant over all the
space, and the conductivity o is constant for each conductor.

Maxwell’s equations at time harmonics are [1, 2]:

VxE = —iwpH (3.1)
VxH = iweE+J (3.2)
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Vl V2 oes V

FIGURE 3-1: Multiple conductors in time harmonic EM field

V-(uH) = 0 | (3.4)

where w is the angular frequency.

In addition, within the conductors, by Ohm’s law,
J=0oE | (3.5).

where ¢ is the conductivity.
Taking the divergence on both sides of equation (3.2) and using the uniform ¢ and

the conductor-wise-uniform o, then we have:
0=(0c+iwe)V-E

Therefore, V-E = 0 is true inside the conductors. For the space outside the conductors
where o is 0, V- E = 0 can be proved for nonzero frequency with the same approach. For
zero frequency, or electrostatics, V- E = 0 is obviously correct for both inside and outside
of conductors. So, the electrical field is divergence free for both inside and outside of the
conductors for time harmonic electromagnetics with uniform u, € and conductor-wise-

uniform o:

V-E=0 (3.6)

With Gauss’s Law (3.3) and uniform ¢, the charge density p must be zero both inside

and outside the conductors. This means the charge is only on S, the union of all conductor

38



surfaces.

3.1.2 EMQS analysis for time harmonic electromagnetics

Because the displacement current is neglected under the EMQS assumption, Ampere’s

Law is changed to its EMQS form

The equivalent representation of Maxwell’s equation with vector potential and scalar
potential for EMQS analysis is well known [1, 2, 37). With V- A = 0 (Coulomb gauge)
, bkH =V x A and —V¢ = E +iwA, the differential equations for A and % turn out to
be: |

VA = —uJ (3.8)
and

Vi) = —p/e (3.9)

where p is nonzero only on S.

Therefore, the integral equations for A and v are:
A@) = | Golz,y)uIy)dy (3.10)
and

¥(z) = [ Golz,1)"ay 3.11)

where Go(z,y) = E"I—:’TZ-I—" V' is the union of all conductor volumes and S is the union of

all conductor surfaces.
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3.2 Two dyadic surface integral equations

In this section, two dyadic surface integral equations are presented that are equivalent
to ~V¢ = E +iwA. These dyadic surface integral equations are applicable to general

3-D structures and arbitrary frequencies.

. 3.2.1 The first dyadic surface integral equation

The first dyadic surface integral equation is derived for every conductor separately(Figure

3.9).

FIGURE 3-2: Illustration of the first dyadic surface integral equation

For the inside of the k-th conductor, the electromagnetic field satisfies Faraday’s Law

(3.1) and Ampere’s Law under the EMQS assumption (3.7), which can be written as

VXE = —iwuH (3.12)

VxH = oiE (3.13)

with J = o0} E applied.
Taking the curl on both sides of Farady’s Law (3.12), using the vector identity V x
(VX E)=V(V-E)—-V2E with V- E = 0, and also applying (3.13), we have a vector

Helmhotz equation for F inside the k-th conductor

- V?E —iwuoE =0 (3.14)
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which is homogeneous for every conductor.
Applying Green’s Second Identity [4] to (3.14) with € Vj as the evaluation point of

the Green’s function yields a dyadic surface integral equation

/Sk Gi(z,y) aE(y)dy — /Sk Mﬁ(y)dy = E(z) (3.15)

on, on,

where Si and Vj are the surfacé and the volume of the k-th conductor,

eiK1|:l:——y| -
Gy(z,y) = m, K, = \/—twuoy, . (3.16)

The surface integral equation relates the electrical field at any point inside the volume
Vi to the electrical field and the normal derivative of the electrical field on the surface
Sk.

With z moved to the interior of Sy in the equation above, a dyadic surface integral

equation is derived which is based on the electrical field and its normal derivative:

[ e, y)a—i%’—)dy A 8—G(.;(1Z-’—"J)E<y>dy - B(z) (3.17)

where z,y € Sk.
Note that a simpler notation is used in which fg, %@E—’(y)dy is the entire integral

rather than a principle-value integral plus an extra term.

3.2.2 The second dyadic surface integral equation

The second dyadic surface integral equation is derived by considering all conductors
at the same time, so that the coupling between the electromagnetic field can be accounted
for(Figure 3-3).

Equation (3.14) can be rewritten as another vector Helmhotz equation:

V2E =iwuJ (3.18)
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LYY

FiGURE 3-3: Illustration of the second dyadic surface integral equation

which is homogeneous throughout the space.
Applying Green’s Second Identity to (3.18) with x € V' as the evaluation point of the

Green’s function yields the following integral equation

J, ot )22y [ 0D iy = ) s [ i) o

Ony

where V is the union of all conductor volumes, S is the union of all conductor surfaces,
and

1

Go(z,y) = pr p—

Note that the Green’s function is the same as that used in the integral form of A and

¢iKolz—yl
° = y where Kj is zero.

¥. Gy can be taken as a Helmhotz kernel of Go(z,y) =
With —Vy = E +iwA and A(z) = f,, uGo(z,y)J (y)dy, the integral equation above

can be written as:

[, 6uto ) 5y - [ 2D i)y 4 va) = (3.19)

This integral equation relates the gradient of the scalar potential at any point in the
space to the electrical field and the normal derivative of electrical field on the surface S.
With = moved to the interior of S, a dyadic surface integral equation can be derived

which is based on the electrical field, the normal derivative of the electrical field and the
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gradient of scalar potential:

8E(y) 8Go(, y)
P dy“/s

Ty Ony,

(L%“W) E(y)dy + Vip(z) =0 (3.20)

Again, the singularity in the integration is not removed.

3.3 The surface integral form for current conserva-
tion

In (3.17) and (3.20), there are three unknowns, F, %% and 1. These two equations
can be understood as the surface integral form of the constitutive relationship of —Vy =
E +iwA, .beca,use they relates Vi) to £ and g—f. Since (3.17) shows that %‘g can be
uniquely determined with E, (3.17) and (3.20) essentially relate V1) to E. This section
gives another basic relationship: the surface integral form of current conservation.

It has been proved that V - E = 0 is valid for the impedance extraction problem
considered. For a surface formulation, a surface form of V - £ = 0 must be derived.

To get the equation for F for certain part of the surface from current conservation, it
is necessary to consider some volume associated with this piece of surface. For a certain
area a of the conductor surface S encircled by a closed path of C' shown in Figure 3-4,
consider the current conservation for a box inside the conductor volume right underneath
a with thickness 6. The top of the box is on the interior of S and the bottom is off S by
a small distance of 4. _

The current flowing in from the top, the bottom and the sides of the box should add
up to zero. With the fact that the top and the bottom are very close, the equation of

the current conservation can be written as:
b b
/C §E, - (n(z) x (z))dz — / / (Bt (t1, 2, 0) — Engyy (1, t2, —6))dtrdty = 0 (3.21)

where a,, by, as and by are the integration boundaries. In equation (3.21), the integration
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FIGURE 3-4: A thin box for surface current conservation

along C accounts for the contribution of F; from the side, while the 2-D integration
accounts for the contribution of E, from the top and the bottom.

For an arbitrary point y on the top of the box, the coordinate is (¢;,t,,0) under the
local coordinate system. The local axes are n(y), ¢, and ¢,, where n(y) is the unit normal
direction vector, while ¢; and t, are two tangential vectors. For an arbitrary point z
on C, n(z) is the unit normal vector, I(z) is the unit vector along C, and n(z) x I(z)
indicates the direction for the current to flow into the box through the side.

Let 6 approach zero and apply a Taylor expansion to the integrands of the 2-D

integration in (3.21), then we have the surface form of the current conservation law:

/C Ei(z) - (n(z) x l(z))dx — /a ai’éy))dy =0 (3.22)

3.4 The capacitive surface integral equation and bound-

ary conditions

3.4.1 Capacitive surface integral equation

As has been shown in the section on time harmonic Maxwell’s equations, the charge

1s just on the surface of the conductors. The relationship between the charge and the
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scalar potential is

P(z) = /S Go(z, y)%y)dy (3.23)

where Gy is the same Green’s function used in the second dyadic surface integral equation

(3.20).

3.4.2 Boundary conditions

(3.17), (3.20), (3.22) and (3.23) are the basic equations of the new surface formulation.
However, special care should be taken about (3.20). Unlike (3.17) which has equations
in three directions, the normal direction of (3.20) is not available to the surface represen-
tation, because it requires the normal derivative of 1. To make up the equation in the
normal direction, the normal boundary condition can be used.

It is well known [3, 2] that the charge conservation law applied to the small area

around a point on S gives the normal boundary condition for £, and p
E,=— (3.24)

where F, is at the interior of S.
For magnetoquasistatics(MQS) impedance extraction, the charge density is assumed

to be zero and the normal boundary condition should be
E,=0 (3.25)

In addition, special care should be taken for the surface where the terminal is attached,
which we call contact surface. For these contact surface, the normal boundary condition
can not be used because the surface is not the interface between the conductor and the
-air, as is the case for a non-contact surface. For a contact surface, we assume FE; is zero,
so that a—a%k is zero if (3.22) is also applied. Intuitively, aa—li’i = 0 at the contact surface
means the input current is not changing in the normal direction.

The other boundary condition is that the potential at the contact surface is given.
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Therefore, the boundary conditions are:

1. For non-contact surface, apply E, = E’;‘—’ in the case of general EMQS impedance

extraction, but apply E, = 0 in the case of MQS impedance extraction.
2. For contact surface, apply %E,f =0.

3. For the contact surface, ¢ is set to ¥, or 7_ depending on the polarity of the

terminal(contact).
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Discretization

In order to solve the system of integral equations of (3.17), (3.20), (3.22) and (3.23),
consider discretizing the surface into N quadrilateral panels, which have M vertices.
Among these panels and vertices, N C panels and M vertices are on the contact while
NNC panels and MNC vertices are not. In such a discretization, a quadrilateral panel
vertex will be shared by four panels. We associate 7 unknowns with each panel: Qaﬁnﬂ, %},
%&, E., E,E, and p, where p is the charge density. The scalar potential is associated
with the panel vertices. The panel discretization and the associated unknowns are shown

in Figure 4-1.
wi' Y. Vs W,
on | on on Ly
Wi - Y INE
b, B B¢ p, Es 285 | p, B 25
4 3, dn 5 £ 3n 6 6, 3n ,\y
w-‘}_: I N RV e

FIGURE 4-1: The discretization of the surface

The panel unknowns are assumed to be constant over a panel, and the collocation

point is set at the center of the panel, as shown in Figure 4-2.
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4.1 Discretization of the first dyadic surface integral

equation

Collocation points

e

’

Panels

FIGURE 4-2: The centroid collocation scheme

If centroid collocation is applied to the dyadic integral equation (3.17), the result is

a dyadlc linear equation N
1 1L = 4.

where P, and D; are both N by N,

P(i,j) = /panel_Gl(Svi,y)dy

.. oG
Di(3,5) = /,, l—anl(z,-,y)dy
anej Yy

and z; is the i** collocation point. With the singularity term already considered, D, is

the discretization of the dipole potential operator of the e;::"' kernel, and

Dl(z’,i)——:%, i=1,...,N

It is worth noting that for the multiple conductor case, there is no coupling between

conductors in equation (3.17), so that if panel 7 and panel j do not belong to the same
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conductor,

Pi(i,5) = Di(i,5) =0

therefore, (4.1) can be taken as independent equations for every conductor.

For example, if there are four conductors in the problem( Figure 4-3), P, consists
of four diagonal blocks as shown in Figure 4-4, where each diagonal block comes from
the discretization of (3.17) for one conductor. The number of rows and the number of
columns of a diagonal block are the same as the number of panels of the correspondent

conductor. The same is ture for D;.

FIGURE 4-3: A four conductor problem

i - J

FIGURE 4-4: Pll matrix of a four conductor problem

Equation (3.17) is actually three independent equations:

aE'x—DlE_z = 0
on

OF. =
Pl?f}_':i - DlEy - 0
PO DB, = 0 (42)
on

Py
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4.1.1 Discretization of the second dyadic surface integral equa-
tion

Collocation applied to (3.20) will result in an equation similar in form to (4.1) with
a V¢ term introduced. The V1 term in the normal direction is difficult to compute as
the surface-normal derivative of the potential can not be evaluated using only the vertex
potentials. Instead, consider applying collocation to (3.20) to get the discretized equation
(4.3) then extracting out only the surface tangential components from it.
Another dyadic linear equation comes directly from applying collocation to the dyadic
integral equation(3.20): B
OF

Po% — (Do - DE +Vy =0 (4.3)

. which can be written in three independent directions as

OF, -
—(Dq — L =
Py on (Dy— )E, + V) =0
OF, _
Fo 3ny —(Do—-NE,+ V=0
Poaa% —(Dy—DE, +V,p=0 (4.4)

where Py, Dy and the identity matrix I are all N by N,

PoGig) = [ Golau)dy
- . oG
Do(,j) = / 29 (51, ) dy

anel; 8ny

Dy is the discretization of the dipole operator of Go(r) = Zl— kernel, and —I comes from

T

the fact that the unit singularity of F is absorbed into V. The diagonal entries of Dy

are
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V1 at panel j in direction ¢ is the combination of three components:
vtqu = tzvx¢3 -+ tyvy’l,[}j -+ tzvzwj

where t = (¢, t,,t,).

The same idea can be used for all of the panels at the same time. Pick a unit
tangential vector for each panel, and form diagonal matrices T1,, Ty, and T3, with the
entries as the z,y, z coordinates of the vectors, i.e, the tangential vector of panel j is
(11,(4,4), T1,(5,7), T1,(5,7)). Then the tangential gradient of 1 on the panels at the

corresponding tangential directions can be written as

With V¢, V4, V,9 substituted using (4.4), resulting equation is

9E, 9E, _ OE,
(Py 52 —(Do = E,)+T. (P 5

T. (R DE)+Vph =0

where V1,1 denotes the gradient of 1 on the panels at the corresponding tangential

directions set by 7 matrices.
T5,,T3,,T5, can be formed by picking another set of tangential vectors, with the vector

of every panel in a different direction to the corresponding one in the first set. A similar

equation holds:

OF, OE, oE,
- I)E )+T2y(Po——(D0 — E)+Ty, (P

T, (P —DE)+Vp =0

For any panel, two independent tangential directions can be found. As shown in
Figure4-5, two tangential directions ¢, and t, are formed by connecting the midpoints of

the sides. The representation of the tangential Vi can be achieved using finite differences.
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For example, the gradient of ¢ along ¢, can be computed with’

Yo + 13 — Py — Py
\V4 —
LY 2| M4 Mos|

where 11, 1,, 13 and 9, are the potential at the vertices Vi, Vo, Vi and Vy, Myy, Mos,
Mz and My, are the midpoints of the sides of the panel, whereas | My4Mys| is the length
of line M14M23.

M |
V4 34 Vs
fo

M14 - 4M23

i

Vi M, V2

FIGURE 4-5: Computation of the gradient of potential

With the finite difference matrix denoted with Az, the final discretized form of (3.20)

in the tangential direction can be written as

OF, _ OF : _ OF, - _

T, (Po——= — (Do = 1) E;) + Th,(Po2 — (Do — NE,) + Th, (Po—5= — (Do — IE,) + App = 0 -
on on on
oF, _ OFE _ OF, _

Ty, (P o (Do — NE,) + Ty, (P _3ny ~ (Do — INE,) + T3, (P i (Do — )E,)+ An,yp =0

(4.5)

where T} _, 1y, Th,, Ty, T,, Ts,, A, and Ar, are all N by N matrices.
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4.2 Discretization of the integral form of current con-

servation

P4 - : P3
QL 03

P1 P2

FIGURE 4-6: Dual panel for current conservation

Consider the dual panel of four panels P, PQ,Pg and P, (Figure 4-6) for resolving
the potential at the shared non-contact vertex O. The dual panel a is encircled by the
dashed line C, which connects the four panel centroids. Applying the surface integral

equation of (3.22) to the dual panel leads to the equation

OE.(y)
a On(y)

/C Ey(z) - (n(z) x I(z))dz — dy = 0

where Fy(x) and aali"(g’;) in (3.22) can be approximated by averaging the electrical field
and the electrical field derivatives of the panels nearby.

With constant electrical field and its normal derivative are assumed on each panel, the
coefficients of E;, E,, F,, %, %ﬁl and Q{% in the discretized equation can be computed
by looking at one panel at a time. Take the field and its normal derivative at panel P; for
example, the coefficients of them can be computed by evaluating the integration related
to P, part of the dual panel, which is a, (quadrilateral Q; M1,0 My, in Figure 4-7).

In Figure 4-7, My, is on the shared side of P, and Py, M, is on the sharéd side of
P, and P,, [; is the unit vector in the direction of M14Q;, I3 is the unit vector in the
direction of Q; M2, n is the unit normal vector of ai, ¢ is n X I; and ¢3 is n X [y The
coordinates of ¢, t, and n are [t1,,%1,,t1,], [t2,, t2,, t2,), and [ng, 7y, Ng)-

Based on the constant electrical field and its normal derivative assumption on Py, the

coefficients of the field quantities in the integration are:
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FIGURE 4-7: The decomposition of the dual panel

1. Ez: |Q1M14|t1x + IQ1M12|t2z
2. EyZ ]Q1M14It1y + |Q1M12lt2y
3. E.: |Q1Mu|ty, + |QiMazlts,

OE; .
4. S —ngSq,

JE
ot AT,
5. St —MNySq,

8E, .
6. 'ﬁ —MN;8q,

where s,, vis the area of a;.
The matrix form of the equation applied to the dual panels formed for non-contact

vertices is:

oE,
on

OE, OE,

Ty a2 E, = 4.
Ca, + Cy, n + Cy, B +CoE+ CyEy + CE, =0 (4.6)

where C;, C,, C,, Cy,, C4, and Cy, are the matrices formed by the coefficients of E;, E,,
E,, %%1, %—I’:n”- and %ﬁl in the surface form equation of current conservation (3.22). Ci,
Cy, C;, Cy,, Cy, and Cy, are all MNC by N.

This equation is used to resolve the potential of the non-contact vertices, or, the

vertices not on the contact panels. For the vertices on the contact panels, the potential

boundary condition can be applied.
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4.3 Discretization of the capacitive integral equation

Through the discretization of (3.23), the charge density on a panel can be related to

the weighted average of the panel’s vertex potentials with
Pop — €A, =0 4.7

where A, is the matrix of potential averaging coefficients that relates the potential at the
centroids to the potential at the vertices. 4, is N by N.
Consider a panel in Figure 4-8 for example, the potential at the center of the quadri-

lateral panel is computed by averaging the potential of the panel vertices

where 1, 12, 13 and 14 are the potential at the vertices V3, Va, V3 and Vj, while Q is

the centroid of the panel.

1/4 1/4
\Z V3
Q
1/4 1/4

FIGURE 4-8: The computation of the centroid potential
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4.4 Applying the boundary condition in the discretiza-
tion

The discretization of the the normal boundary conditions consists of applying the

normal boundary condition to the panels.

1. If panel j is a non-contact panel, then

n(j)- £(j) = 22 (4.8

is applied in the EMQS case, but

n(j) - B(j) =0 | (4.9)
is applied in the MQS case.
2. If panel j is a contact panel,
~ OE(j) :
M 4.10
n(j) - 5, (4.10)
is applied.
'The matrix form of (4.8) is
NNCzEm+NNCyEy+NNCzEz+Wp:O » (411)

where Nyc,, Nnc, and Nyc, are N NC by N matrices formed by X,Y, Z coordinates
of the unit normal vectors at the non-contact panels, and W is formed by the entries
~of —%ﬂ. These matrices have Nyc rows because the equations are for the non-contact
panels. Note that zeros are padded for the columns related to contact panels.

Similarly, the matrix form of (4.9) is

NNC,E:L' + NNCyEy + NNCzEz =0 (412)
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And the matrix form of (4.10) is

OF OF, OF
N, =+ Ng, —2 — =

where Ng_, N¢, and N¢, are NY by N matrices formed by X,Y, Z coordinates of the
unit normal vectors at the contact panels. These matrices have N¢ rows because the
equations are for the contact panels. Note that zeros are padded for the columns related

to non-contact panels.
The potential boundary condition is applied to the contact panels. If panel jis a

contact panel, then

T/ij - 7;[}0 (414)

for vertex v; of the panel. In (4.14), . is the given potential on the contact. Typically,
P, 18 set to +% for the positive contact and —% for the negative contact.

The matrix form of (4.14) is
| | Ioy = 4, | . (a19)

where Ic is M€ by N. Ic has M€ rows because the boundary condition is applied to
the contact vertices. Note that the columns related to non-contact vertices are padded

with zero’s.

4.5 The linear system and the computation of the

input current

4.5.1 The linear systems for EMQS and MQS impedance ex-
traction

The discretized equations (4.2), (4.5), (4.11), (4.13), (4.6), (4.15) and (4.7) can be
summarized as the linear system of 7N + M eqations and 7N + M unknowns for EMQS

impedance extraction:
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where the first three rows correspond to the discretized first dyadic surface integral equa-
tion (4.2), the fom;th and the fifth row correspond to the discretization and tangential
combination of the second dyadic surface integral equation (4.5), the sixth row corre-
sponds to the normal boundary condition for non-contact panels in the EMQS case(4.11),
the seventh row corresponds to the normal boundary condition for contact panels (4.13),
the eighth row corresponds to the discretization of surface current conservation equation
(4.6) applied to non-contact panels, the ninth row corresponds to the potential bound-
ary condition applied to contact vertices(4.15), and the tenth row corresponds to the
discretization of the capacitive equation (4.7).

In the MQS impedance extraction case, the charge can be dropped out, and the normal
boundary condition for non-contact panels for MQS analysis is used'. The discretized
equations (4.2), (4.5), (4.12), (4.13), (4.6), (4.15) form the linear system of 6N + M

eqations and 6 N + M unknownsfor MQS impedance extraction:
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P, D, |
P —-Dh Qa%a
Py —-Dy %I_il
TPy | TPy | T0.Po | ~T1, (Do — I) | ~T1,(Do — 1) | =T0,(Do = I) | Ay or,
Ty.Py | Ty, Py | Ty, Py | ~Tp. (Do — 1) | =T, (Do — I) | ~To. (Do = I) | Ay, E,
Nyc, Nnc, Nye, W E,
No, | Ne, | Ne. E,
Caq, | Cay | Cq Ce Cy C, (U
Ic 4
—€A4, | B

(4.16)



P —-Dy

P D, - o5,

P, _D o8,

T1,Py | Ty, P | T, P | —Th, (Do —I)| —Th, (Do —1I) | —Tx, (Do = 1I) | Ay QBETZ
Ty.Py | Ty, Po | ToPo | ~To.(Do — 1) | =Ty, (Do = I) | ~To.(Do— 1) | Awy | | E. | =1

Nnec, Nnic, Nnc, E,

Ne, | Ne, | Ne, £,

Ci, | Ca | Cu, Cy Cy C: v
L IC i

(4.17)

In the block matrices of (4.16) and (4.17), only Fy, Do, P, and D, are dense.

4.5.2 Current computation, impedance extraction and circuit
parameter extraction

Once the linear system is solved, the current flowing into the conductors can be
computed. As shown in Figure 4-9, current I flowing into contact C, can be computed
by summing up the current flowing into the panels on the contact with (4.18). Note that

n., is opposite to the direction of the current flow.

I= Y —o(ny-Ejs; (4.18)

panel;€Cy
where s; is the area of panel j.

For two port impedance extraction, a linear system of equation can be set up at
certain frequency f with a unit potential difference applied to the two terminals. After

the linear system of equation is solved and I is computed, the impedance at the frequency
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FIGURE 4-9: The summation of the current

of fis

Z==:
1

The resistance and effective inductance at the frequency of f can be computed with

R =real(Z2)
and
imag(Z
Less = ———5( )

Then a simple circuit approximation of the conductor at the frequency f is a resistor of
R and an inductor of L.y in series. For MQS analysis, L,s; reflects inductance effect of
the conductor, while it reflects the qoupled' indﬁctance and capacitance effects for EMQS
analysis.

For the case with multiple voltage sources or current sources, use the technique in
chapter 2 is used. After the impedance matrix Z is computed, the resistance matrix and

inductance matrix can be extracted as:

R =real(Z)
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Low freqﬁency and high frequency
problems

5.1 The low frequency problem

At sufficiently low frequencies, the discretized formulation for MQS analysis generates
an impedance with the imaginary part that decreases more like /w than like w. In this
section, Taylor expansion at low frequency is used to show that a \/w term actually exists
in the Green’s function kernel in the first dyadic integral equation (3.17), but it should
have zero contribution to the linear system of equations if there is no numerical error in
the discretization, because the impact of this term is proportional to the product of three
operators which turns out to be zero. However, the numerical errors in the discretization
of these operators often lead to a nonzero product of them, and the impact of y/w term
can be significant because the /w term can dominate the w term at low frequencies.
Linearization of the Green’s function kernel in respect to w at low frequencies is used for
the surface formulation to eliminate the \/w problem completely.

There is a second problem at high frequency. The current at high frequency is crowded
near the surface due to the skin effect, and this means that the contact sﬁrfaces need very
fine discretization because a contact is just like a cross section inside the volume. To avoid
fine and adaptive meshing of the contact surfaces at higher and higher frequencies, the

magnetic field around a cross section nearby the contact is used to compute the current.

63



With more mathematical manipulation, the current can be computed with the electrical
field and its normal derivative on the non-contact surface near the contact. In this way,

the need to use fine discretization for the contacts at high frequencies is eliminated.

5.1.1 /w term at low frequency

To check the formulation, MQS impedance extraction is performed first on a ring ex-
ample. The ring has a diameter of 10 um. The cross-section is a square of approximately
5 pm by 5 um and o is 54 mho pm. In the discretization of the problem shown in Figure

9-1, the loop is broken into 12 segments.

FIGURE 5-1: The discretized ring

MQS impedance extraction is performed for the ring example because a ring has a
low frequency analytic formula for inductance, and the low frequency resistance can also
be easily estimated with Ohm’s Law. '

Because the low frequency impedance should be R + iwL, the imaginary part of the
impedance Z should change proportionally with w in the low frequency range.

The simulation result, however, is different from the expectation. From Figure 5-2,
it is obvious that imnag(Z) does not change linearly with frequency. As the frequency
changes from 10° Hz to 10? Hz, imag(Z) decreases by less than one magnitude instead
of decreasing by three magnitudes.

To understand this problem, careful low frequency analysis was carried out for (4.17),
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FIGURE 5-2: The abnormal behavior at low frequency

which can be written as:

Alw)z=1b

The right hand side is always real, with the entries zero or the value of the applied
potential. The matrix is frequency dependent, but this dependency on w only comes
from the block matrices of P, and D;.

If every entry from these blocks can be approximated by a real constant plus an O(iw)
term, then A(w) can be approximated with A; + iwA,, where A; and A, are real and
independent of w. If this is the case, the solution of A(w)z = b has negligible higher
than O(w) terms, and so does the current. As a resﬁlt, Z should have a imaginary part
linearly dependent on w.

However, this is not the case. The entries of P; and D, take the form of

Pid) = [ Greu)dy

L. oG
Di(i,5) = / T2 (4 y)dy

anel; any

where

ezKlla: v
Gi(z,y) = o | =4/ —ilwpo = \/ -1+1) (5.1)
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iKyr . .
€ in terms of K is:

Since K, is O(y/w), the Taylor expansion for &

KT 1 ] 10K 2.2

e _ L g g LUEYTT
T T 2

" + o(w) . (5.2)

In the expansion, the first term is a real constant and third term is actually %ﬁ%ﬁ,
which is imaginary and linear in w. The second term is O(K) with a factor of \/@ (-1—
i), which has an imaginary term of the order +/w!

Obviously, the O(K7) term is the source of the nonlinear dependency of imag(Z) on

the frequency. The same problem might exist in ———Hct';ln(r .

5.1.2 The elimination of the yw term and the justification

The existence of the \/w term in the matrix entry seems to be contradictory to physical
analysis. Certainly it can be eliminated by throwing away the K, term in the right hand
side of (5.2), which is the source of \/w. The terms of higher order than the third term
are negligible. This can be taken as a linearization in terms of w. The linearized form of

(5.2) is:
iKyr 1 1GK 2,.2
€ = — —.m

5.3
T r T 2 (53)

However, it remains to be proved that the O(y/w) term can be eliminated mathe-
matically. To prove this, a Taylor expansion will be performed on G;(r) and %ﬁ to
second order in K7, then the order K; terms will be shown to have zero impact in the
formulation.

The expansion of the monopole and dipole kernel is:

eiKlr 1 K127'

~-+1K; — (5.4)
T T . 2
and
—?—_eiKlr N 'I:Kl'r - 161K1Tﬁ
on r r2 on
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Ko — 1 Kr? 0
C T (1 iRy 4 B Or
T 2

255
~ -—th TZ2K1T(1+Z'K17'+2KIT g—;
N 1+ K;r? 1 —iKyriKqr? or
~ 7r? + 72 2 )%
-~ 10r K12 or
T r20n "2 on
. 01 K?or
- %;_Tan

The final expansion result for the. dipole can be written as:

o eEr 8% K2 0or
T San T 5 as (5.5)

It is clear from (5.4) and (5.5) that the K 1 term is automatically eliminated in the
dipole kernel expansion, but it exists in the monopole kernel expansion.

For the single conductor case, the definition of P; and D, for the discretized surface

is:
PG k) = /p . G125, 9)dy
anely,
. 0G,
Di(j, k) = / ALY
I(J ) panely Bny (-’E] y) y
where z; is the center of panel j. N
Based on (5.4) , P, can be expanded as
Pl ~ Po + iKIPa + PLM (56)
where
Pa(j, k) = S
. K,?
Pry(d k) = —-2L lz; — yldy
panely,

and s is the area of panel .
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Similarly, D; can be expanded based on (5.5):
Dy = Dy+ Dip : | (5.7)

where

. K,? dz; —
DLD(J,/’ﬁ)=——*~21 /p l Ole; ~ 9l ajn y'dy
anely y

In these matrices, Py, P, and D, are constant, while Pry and Ppp are order O(w).
In the expansions, only iK; P, is O(y/w). In addition, Py and Dy are the discretized
form of the monopole and dipole electrostatic potential operators on the surface of the

conductor.

The impact of P; and D; to the MQS linear system (4.17) is only reflected in (4.1):

OF

P _ Lo
15, D/E =90
Or -
OF _
5. =P'DiE

If it can be proved that P['D; is approximately a constant matrix plus an O(w)
matrix, then the whole MQS linear system should not be influenced by O(y/w) terms in
P |

Following is the mathematical manipulation of P *D; based on dropping the terms

smaller than O(w), or O(K?):

P'Dy =~ (Py+iKiP,+ Pry) (Do + Dip)

[(I +3K\P,Py™ + Poayy Py )Py (Dy + D1p)

Q

Q

Py (I + iK1 PPy + Pryy Py 'Y Y(Do + Dip)
Py YT —iK PPyt — Poy Py~ + (iK PPyt + PoyePo™ ') ?)(Do + Dip)

Q

Py I — Poy Py~ — iK PPyt + (iK1 P.Py™1)?)(Dg + Dyp)

&
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~ Py Dy — Pry(Py™ Do) + Dypy — iK1 Py(Py™1Dy) + (1K PPy )2 Dy)

Among the terms in the square brackets, Dy is constant, —PLM(PO_IDO) and D;p

are O(w). It remains to be proved that ~iK, P,(Py"'Dy) and (¢K1P,Py ™12 Dy are zero.

Since both these terms have a factor P, (Py~'Dy), let us prove
Pa(PO—lD()) == 0

Note that Py and Dy are both discrete electrostatic operators on a conductor, and P,

consists of the area of the panels. Based on these facts, the proof can be done through

electrostatic analysis.

FIGURE 5-3: A conductor under electrostatics

In electrostatics for the conductor in Figure 9-3, the scalar potential ¢ satisfies Laplace

equation

Vi) =0

Applying Green’s Second Identity to the equation above yields

Jsco

where 7 is at the interior of S.

6;/;53 )dy - /S 6G§(z 1) Y(y)dy = ¢(z) (5.8)
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In the discrete form, (5.8) is
0
PSY = Dy
n

where 1 and g—’f are the vectors of the scalar potential and its normal derivative at

the interior of the surface.

The equation can be also written as:

M (Po~' Do)y

The Laplace equation of 9 can be written as V - (V%) = 0. With Gauss’s Theorem
applied to the volume of a conductor, V - (V¢) = 0 leads to

M (y) |
/S on, o, W=0

which has the discrete form of
v, 2 | (5.9)
5 7 on

where s; is the area of panel j.

Combined with P, (k, j) = s; and —ffi = (P~ D0)¢, equation (5.9) gives

PP 'Do)p =0

which holds for arbitrary 1.

Therefore,

P.(Py'Dy) =0

The proof justifies the approximation

P'Dy m Py Dy — Ppa(Py~'Dy) + Dyp)
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and the linearization of P; and D,

P

D,

in terms of w by:

Py +1K1FP, + Prym

Do + Dirp (5.10)

For the multiple conductor case, the same proof can be used for every conductor
separately to justify the linearization because the first equation (4.1) in the MQS linear
system (4.17) can be taken as independent equations for every conductor. For the low
frequency case of EMQS analysis, the linearization is also necessary.

Even though terms of O(,/w) should have zero impact theoretically, the O(yw) term
still shows up in the numerical experiments such as the ring example when linearization is
not used because numerical errors in the discretization and computation are unavoidable.
The impact of numerical errors of O(y/w) at low frequency is unpredictable, because

O(y/@) is larger in the order than O(w).

For the computation of Py, D; the following linearized kernels should be used:

€iKlr ~ 1 K127'
T o 2
iKir 2
Oe 01 K or (5.11)
on r onr 2 on

For f < F}, the linearization is used to eliminate the O(y/w) term, where Fy can be
set at the frequency at which imag(Z) =~ O.ereal(Z). A more formal way of choosing

F} is to make sure that
K127” 1

=<

for all possible cases of numerical computation.

Provided the largest diameter of the conductor is d, we can choose:

1

Fp =~
L ndp*po

It is worth to note that the exact choice of Fy, is not critical to get accurate results.
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Take a rectangular wire of 8 um long, 1 um wide and 1 pm thick( Figure 5-4) for example,
very similar results can be obtained for the frequencies ranging from 10* Hz to 10% Hz
with or without linearization depending on whether F, is set to be 1.510% Hz or 1.510°
Hz (Table 5-1). Table 5-1 shows that the computed imaginary part of the impedance of
the wire changes very little when Fy, is changed fron; 1.510% to 1.5103. It is also worth
to note that F; should be chosen for every conductor separately because the first dyadic

integral equation (3.17) is applied to each conductor independently.

FicuRrE 5-4: A discretized wire

Fy, | imag(Z) at led Hz imag(Z) at 1eb Hz imag(Z) at 1e6 Hz
1.510° 2.82709e-07 2.82709e-06 2.82709e-05
1.510% 2.82718e-07 2.82739e-06 2.82803e-05

Table 5-1: Imaginary part of the impedance under different F’s

5.2 The high frequency problem

The volume based impedance extraction formulations have numerical difficulty in
handling skin effect. The skin effect drives the current to the surface of the conductor
at high frequencies. One dimensional analysis [3] shows that the current damps expo-
nentially from the surface of the conductor to the volume. To make things worse, the
damping is more severe at higher frequency. Figure 5-5 shows qualitatively the curves
of the damping at two different frequencies, f and 10f. The damping function used is

eV %ﬁr, where r is the depth from the surface.
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FIGURE 5-5: The skin effect at two frequencies
effect:

For general 3-D cases, equation (3.15) provides a mathematical description of skin

0G (

E(z) = /Gl(:r ) BE(y)d —/ 3 y)E’(y)dy
where

eiKllf—yl
Gl (iL', y) =

drlz — y|

K= wua( 1+ 1)

FIGURE 5-6: The skin effect for a conductor of general geometry

73



With this equation, the electrical field at any point z inside the volume is related

to the electrical field and the normal derivative of electrical field on the surface(Figure

eiKilz—vi

5-6). At a high frequency, describes the damping as  moves into the depth of

dmjz—y|

the volume while y is on the surface. Near the surface, the damping of the magnitude is

pow

approximately e”V 2 "
To reflect the skin effect, a very fine discretization should be used along the depth
of the conductors, or the cross section of the conductor needs very fine discretization as ‘

shown in Figure 5-7.

| 58
| 1

FIGURE 5-7: The discretization of the cross section to capture skin effect

Because the contact is actually a cross section, the surface formulation will have
the same discretization problem at high frequency if the input current is computed by
summing the currenﬁ at the contact. However, a method similar to that of [31] can be
used to avoid this.

Instead’ of summing the current at the contact surface C., the current at the cross
section S, nearby the contact can be computed (Figure 5-8). S, is encircled by the
directional loop of L. Note that S, has the normal direction along the current flow
direction, which is opposite to the normal direction of Cj.

Start from Faraday’s Law and Ampere’s Law

VxE = —iwuH
VxH = iweE+J
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FIGURE 5-8: An equivalent way of high frequency current computation -

The current is

I = - E-n)d
C+a( n)ds

= [Sc o(E -n)ds

7 [ (v x H)nds

I

o -+ we

With Stoke’s Theorem, the derivation can be proceeded as:
1= " [A-td

o+ iwe
/ (V x E) - tydl
L zw,u

/ (V x E) - tydl

o + twe
o

o + twetwp

where t; is the unit vector along loop L.

To represent V x FE with the quantities available in the surface formulation, consider
a local coordinate system near a point‘ z on L. In Figure 5-9, = is on L, n is the unit
normal vector, #; is the unit vector along L, and ¢y = n X | is a tangential vector in the

direction of current flow.
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FIGURE 5-9: The local coordinate on the peripheral of the cross section

Because V x E can be written as

tl tf n
il 8 &
Ey, Ei, E,
we have
_ OFE OFE;
VxE)tj=———=1L
( )t dt;  on

Therefore the formula for high frequency current extraction is:

7= o -1 oF,
T o +iwetwp JL Oty

_ 9%y )l (5.13)
on

This formula is applicable for fullwave analysis because no approximation about the field
is made.
In the EMQS case, however, the displacement current term in Ampere’s Law will be

dropped so that the formula becomes:

-1 [,0E, OE
= — dl 5.14

amn
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For the MQS case the formula can be simplified further because E, = 0:

OF
=1 b a

wp Jr On (5.15)

. .. JE .
In the discretization, Wtf can be computed with

0E, OF t
on on !

while %%& can be computed with the finite difference of two nearby panels along the

direction of the current ¢; on the non-contact surface, as shown in Figure 5-10.

Panel 1 Panel 2

C1 C»

te

-

FIGURE 5-10: The finite difference scheme for E,, term

The finite difference formula is:

where d; is the distance between the centers of the two panels, C’1 and Cs.

The high frequency method of current computation should be used when the skin
effect. is strong, or the diameter of the cross section of the conductor is larger than the
skin depth. Assume the largest diameter of the cross section is dg. At the frequency of
E’iﬁg’ dy is the same as the skin depth, which is § = \/:2—#;

Define Fy as:

4
Fy=—
= ruody

At the frequencies higher than Fy, the skin effect is quite strong, so that the high
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frequency method of current computation should be used.

Again, the exact choice of Fy is not critical because the two ways of computing
current produce similar results for around one decade of frequency. Still take the wire
in Figure 5-4 for example, Table 5-2 shows that similar iniaginary part of the impedance
is obtained with two ways of current computation even though the discretization is very
coarse. In the table, E stands for the ordinary way of computing the current I with the
electrical field, while H stands for the method of current computation using the magnetic

field.

Method | imag(Z) at 10 Hz imag(Z) at 10'' Hz
E 2.88218e-01 2.73453e+00
H 2.72075e-01 2.66651e-+00

Table 5-2: Imaginary part of the impedance from two different methods

With the special treatments of linearizing the kernel at low frequencies and using
the magnetic field to compute the current at high frequencies, there are three modes of

| computation for the surface formulation as summarized in Table 5-3.

Special treatment | f<=F, F < f<=Fg [>Fy
Linearization Yes No No
Use H for I No No Yes

Table 5-3: Three modes of computation
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The panel integration. of the Green’s
function

6.1 Helmhotz kernel

In the linear system of the surface formulation, the panel integration of ei;R and ;9% ei;R

is necessary. The integration is equivalent to the potential due to a uﬁiformly distributed

eikR

monopole or dipole over the panel with the Helmhotz kernel %5 (Figure 6-1). In the

figure, z is the evaluation point, y is a point on the panel of distance R from z, and n is

the normal vector of the panel.

FiGURE 6-1: The potential due to the source over a panel

There is analytic formula to compute the potential due to a uniformly distributed
monopole and dipole over a panel with 1/R kernel [5, 6], which is a very special Helmhotz

kernel with zero as the wave number. Actually, even a dipole distribution over a panel
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with a linearly varying intensity in respect to the space has been shown to have analytic
formula for the potential evaluation [42]. The derivation of all of the analytic formula
is based on the desingularization transform eliminating R from the denominator to get
a rational relationship between the potential and R. However, the analytic formula
for the panel integration of a general Helmhotz kernel seems very unlikely because the
relationship between the potential and R is still not rational even after the singularity of
R is eliminated. A numerical integration scheme seems to be necessary.

It would be convenient if a numerical scheme were developed to compute the inte-
grations of Helmhotz kernel with an arbitrary wavenumber k, real or imaginary, because
in the EMQS case k is K; for G, but 0 for Gy, and in the fullwave case to be shown
in chapter 9, there will be more values of k. Such a numerical scheme would also be
useful in the general context of computational electromagnetics, such as scattering and
radiation simulation.

Since the potential of the uniform dipole distribution is equivalent to the derivative
of the potential due to the monopole distribution with the evaluation point moving along
the opposite direction of the normal of the panel(Figure 6-2), it would be enough to
develop a numerical scheme to evaluate the monopole potential and its derivative in any

direction.

FIGURE 6-2: The conversion from dipole potential to the derivative of monopole poten-
tial

In this chapter, a scheme is developed which is applicable to general polygonal panels
and general Helmhotz kernels. Through coordinate transformation, the scheme eliminates
the singularity in the integration. The 2-D integration is reduced to a 1-D integration by

computing the inner integration analytically. For the 1-D integration remained, a Gauss
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Quadrature scheme is used. Note that the normal derivative is taken at the evaluation

point along the normal direction of the panel in the following text of this chapter.

6.2 The integration by side

The problem can be described as computing the potential ¢ at = and the derivative
of ¥ at x in an arbitrary direction D due to a unit uniformly distributed charge density

on a panel(Figure 6-3):

Vi

FIGURE 6-3: The integration over a polygon

ikR

[
¥=[ s
W _ [ 0

oD JsdD R

Assume the projection point of z onto the plane of the polygonal panel is P, where
zP is perpendicular to the panel. As shown in [6], any integration done over the polygon
can be computed by adding or subtracting the integration done over the triangles formed
by P and the sides of the polygonal. This idea can be shown easily in Figure 6-4

In Figure 6-4, the polygon has all sides labeled in a counter clockwise direction looking
from P. The idea of the decomposition of the integration can be explained by computing

the area of the polygon, which is the integration with 1 as the integrand. To get the area
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FIGURE 6-4: The decomposed integration over a polygon

of this polygon enclosed by the closed counter clockwise loop, we can also connect the
vertices of the polygon to P and compute the area of the triangles like PV;V;,;. If the
side is counter clockwise looking from P, the area of the triangle is added, otherwise it is
subtracted. An easy example is the computation of the area of a triangle ABC in Figure
6-5. In this easy example, the area of ABC is the algebraic sum of areas of the triangles

formed by P and the sides:

Sapc = Spec + Spca — Spas

—

B

FIGURE 6-5: The decomposed integration over a triangle

Obviously, the same idea can be extended to the integration of a general integrand

over a polygon. Let X be a general integrand, then the integration of X over the polygon
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in Figure 6-3 can be written as:

ViVir

N
/Sde = ; sign(ViVis1) /}; Xds (6.1)

where N is the number of vertices, V41 = V4, and sign(V;Vi1) is 1 1f V;Viy4 is counter
clockwise looking from P, but —1 otherwise.
With this important equation, the integration for % and 7 can be done one side at

a time. For every side, sign(ViVi41) should be accounted for in the integration.

6.3 The desingularization transform

Assume AB is a side of the directional polygon, with the direction from A to B. For
side AB the integration region is PAB, as shown in Figure 6-6. In the figure, y is a point
in the integration region, with a distance of 7 from P and R from z. h is the distance of

zP, or the distance of = to the plane of the polygonal panel.

P

FIGURE 6-6: The one-side integration of a panel

The integration can be written down in polar coordinates as shown in Figure 6-7:

6B /Tb(o) eikR
T

H(AB) = /9 o

A

OB(AB) 0= [ O ¥R
opAb) 9 (¢ \rdrds
oD /aA /Taw) o R
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In Figure 6-7, the origin of the polar coordinate system is P, the axis of # is perpen-

dicular to AB, and 7 is the distance of the point on the panel from P.

P
FIGURE 6-7: The one side integration in polar coordinates
Figure 6-8 shows the region of inner integration of r, where a and b denotes the

starting and ending points for the inner integration based on r, with 6 fixed. Obviously,

-a(#) is always P and b() is on AB.

FIGURE 6-8: The inner integration bounds of one side polar integration

With the use of coordinates of R and # as in [6] and with e* written as z, the
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integration can be transformed into:

6B [ Ry(6)
B) = R
H(AB) /9 / [y 4R

OPAB) _ (%5 (RO 0 g
o = /0 /(9) dRd0 (6.2)

The derivation uses the facts R = v/72 + A% and RdR = rdr. Note that R,(f) is always

h, the distance of = from the plane of the panel.

With the transformation above, the 1/R singularity is removed.

6.4 The inner integration

The inner integration in the dimension R can be done analytically.

6.4.1 The inner integration of

Let us solve the problem of v first.
Specifically, in the case of k # 0 (or z # 1), the inner integration in computing ¥ 1s

enerall :
g Yy Ry RdR ZRb _ zRa sz _ ZRa, 6 3
/Raz T Tin(z) | ik (6:3)
while in the case of k =0 (or z = 1),
R _
/ " 2RdR = Ry — Ra (6.4)

However, for k with very small norm, |Z| is very close to 1, so that (6.3) is numerically

inaccurate.

In this case, a Taylor expansion can provide a better method for computation:

Ry 4Ry _ Ra
R4R = Z—— 2
/Ra z ' In(z)
_ e
In(z)
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zRa e(R(,-Ra)ln(z) -1
In(z2)

2l i [k(R, — R,)]

1k n!

&

n=l]1

When |k| is very small, a small number of termg in the Taylor series should give an
accurate result. Obviously, £ = ( is also covered in the sma]l |k| case.

In the practica] cases R = Ry — R, can change in a wide range from almost zero to
the diameter of 5 large structure, so that the choice of the computation mode should be
based on [k R)| instead of k| alone.

Suppose the expansion is always done to order 4 and a precision of about 10~15 is

wanted, then the criteria and formulae for the inner integration of Y is:

1. For |kR| < 0.001,

Ry 2R A [ik(Ry — R )"
R . a i
A ©9
2. For [kR| >=0.001,
R Ry _ R,
/ "sRgp = Z0 =2 (6.6)
Ra ik

6.4.2 The inner integration of computing %

The inner integration of computing i‘%@ is based on the result of the inner integra-
tion of Computing 1(AB).
For k # 0, it follows from (6.3):

R 9 0 zf _ yR.
L. spEtar = Ozt

R, OD oD ik
OR OR,
— R 5 b 2Ra 5 (6.7)

while for k£ = 0 (or z =1), it follows from (6.4):

B g . 0

R 552 dR = %(Rb—Ra)
_ OR, 0R,
"~ 9D " 3D
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Therefore, one formula applies to all cases of k:

Ry iszR:szaRb _ RaaRa

k. 0D oD ° 8D

(6.8)

In the formula above, the unresolved terms are %%’l and %“—. The derivative of R in
arbitrary directions is a linear combination of the derivatives in the directions denoted
by the unit vectors 7, t; and t; shown in Figure 6-9, where n is the normal direction of
the polygon, t; = AB X n is perpendicular to AB while ¢, is parallel to AB. Actually,

t, is in the same direction as the 6 axis. The derivative along D can be related to the

derivative long these three basic directions:

OR

OR OR OR '
—B—D‘ —‘%(D'n)‘*'gt‘l‘(D'tl)—"”ag(D'ﬁ) (6-9)

t2

P

FIGURE 6-9: Three directions of the derivative computation

6.4.2.1 Normal derivative

Consider the normal direction of the derivative first.

With

Rb = \/Tg"i"hz

R, = h (6.10)
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it is obvious that:

OR, h

on - Rb

OR,

5 =P (6.11)

where p, is 1 when the evaluation point is on the positive side of the panel, but —1

otherwise.

6.4.2.2 The derivative at tangential direction of ¢;

For the tangential direction ¢, the derivative is computed by perturbing the polygon
in the —t direction while holding the evaluation point fixed. Note that the coordinate

system based on P is unchanged.

n

A

FIGURE 6-10: The perturbation of side AB along t;

Figure 6-10 shows the method of computing % in which AB is perturbed along ¢;.
The key is that point b has the same 6 coordinate when perturbed, so that r = dsec @ is

always valid in the perturbation. Based on this fact, the following is true:
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OR, OR, Or

t; 9r oty,,,
= L sec(6)
b

,,.2

Ryd

Note that 6t16 is used in the first step when the perturbation of the panel is performed.
pan

Because R, remains to be h for perturbation of the evaluation point in the tangential

direction, &% = 0 must be true.

Therefore, the derivative of R, and R, along t; is:

Ok, _ 1

Oty  Ryd .

OR, |

S = O (6.12)

6.4.2.3 The derivative at tangential direction of ¢,

The perturbation of AB along ¢, is shown in Figure 6-11. It is clear in Figure 6-11

that b does not change position in the pefturbation, SO % must be zero. For the same

reason, &fa is 0.

Therefore, the derivative of R) and R, along direction £, is:

OR,
o -
OR
LA 6.13
o, O (6.13)
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FIGURE 6-11: The perturbation of side AB along t,
6.5 The outer integration about § and an improve-

ment

6.5.1 A plain outer integration scheme

With (6.1), the integration for computing 1 and g—% are decomposed into the inte-
gration over one side at a time. The one-side integration can be written into the 2-D
integration form of (6.2). For the inner integration, (6.5) and (6.6) can be used for
computing v, while (6.8), (6.9), (6.11),(6.12), (6.13) can be used for computing 2%.
| The outer integration of (6.2) about ¢, however, needs to be done numerically. With

a Gauss Quadrature scheme, the integration formula is:

/0 jB F(6)d ~ i wi f(6;) (6.14)

where f(0) is the result of the inner integration, N is the Gauss Quadrature order, w; is
the weight and 6; is the quadrature point within [04,05],i=1,...,N.
With (6.14) and the formulae for the inner integration, a numerical scheme to compute

¥ and % is established.
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6.5.2 A flaw in the plain outer integration and the solution

X

F1GURE 6-12: The flaw in the outer integration

There is a serious flaw in the outer integration scheme with the use of § as the inte-
gration variable. The situation can be shown in Figure 6-12, where H is the intersection
of AB and the @ axis, d is the length of PH, [ is the length of bH. As shown in Figure
'6-12, P is very close to the side AB, which means r = dsecf changes rapidly when 6
is close to zero. As a result of R = +/r2 + h2, R changes very rapidly with 0 as well.
Because the inner integration is done over R, more quadrature points are required around
6 = 0. When P is very close to AB, the outer integration will be performed close to a
singularity point.

An integration close to a singularity point can cause large numerical errors. For
example, the collocation implementation of the second kind of formulation for capacitance
extraction has very large numerical error when the conductor has sharp edges because in

that case the integration of the close to singular field around the edges is subject to large
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numerical error. To overcome this problem, qualocation method is introduced which
changed the integration to the integration of a smooth function and the accuracy can is
greatly improved [41]. The same idea can also be applied to the inductance extraction
with permeable materials [43].

Fortunately, a simple transformation for the outer integration can be made by replac-
ing [ df with fdl, or even with [dr to get away from the singularity problem. In Figure
6-12, it is clear that:

! SIS E
0 = arctg 5= arctg

d
Then we have
1 1 T
= - d
40 14+ 255 d V& ’
d 1
= ——=—dr
T A /,r2 _ d2
With the relation above, 7 = VI + d? and dr = \/'l—;;r—jﬁdl; the following transform can
be made: »
d 1
= ——d
N T
_d 1 ! dl
- T \/,;-2 _ d2 \/lT+ d2
d
= ;—le
d
= dl
12 +d?
The transform can be written as:
d 1 _
and
do= % (6.16)
12 4 d?
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Meanwhile, the inner integration can be done in terms of [ or 7, with the substitution
of:
0 t l
= arcltg =
94
and

VT2 — 2
0 =arctg ————
d
When the outer integration is done with respect to [, the numerical accuracy is
very satisfactory. With 23 quadrature points, 10 digits of accuracy is achieved for the
Helmhotz kernel with & = 0 in the comparison with the analytic result of the potential

and field at various different evaluation points due to a uniformly charged panel.

6.6 Linearized kernel

In the low frequency case, linearization is necessary in the computation of the P, and
D; matrices in the linear system of (4.17) or (4.16). The linearization introduces two
matrices Pryr and Dpp to be computed, with the entries defined as:
ki

Pl )= =5 [ oy —yldy
anet

| . k2 olz; —
Dip(4, k) = __21_/;; z Oe; —yl BJn y’dy
anely, y

Then the numerical integration involved can be written down as

= | Rd

Vim /s s

Yip = oR s (6.17)
s on

where the derivative is taken at the evaluation point, and n is the normal direction of the
panel, as shown in Figure 6-13. The same idea used in the computation of the Helmhotz
kernel can be used here to take the derivative at the evaluation point instead of at the

source point on the panel.
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N

y

FIGURE 6-13: The basic integration of the linearized kernel

6.6.1 Computing [g Rds

For the integration to compute Y1, (6.1) can be used to reduce the computation to

one side at a time, and the integration for side AB can be done in polar coordinates:

5(6)
Yrm(AB) = /g / Rrdrdf (6.18)
A Ta

Using the same transform as used for the Helmhotz kernel, the integration can be

done in the coordinates of R and 6, and then reduced to a 1-D integration easily:

bim(AB) = /0 ” / o " Rards
64

The relationship between R, r and h is shown in Figure 6-7, and R = v/ h? + r2.
In addition, the transform of (6.16) and Gauss Quadrature scheme can be used to do

the integration over .

6.6.2 Computing [s %%ds

The computation of [ %—ds can be done in a easier way, based on the relation between

R, r and h.

Because of

R=+Vrt+h?
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it 1s clear that
OR OROh _h
an ~ Ohon R
where p, indicates if the evaluation point is on the positive or negative'side of the panel,
namely: p, is 1 if the evaluation point is on the positive side, and —1 if the opposite is

true.

With this fact, the following is true:

L%%ds :pph/S%ds :

where fsjl{- can be computed as the potential due to a uniformly distributed monopole

of the Helmhotz kernel with k£ = 0.
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Preconditioned iterative solver

7.1 GMRES, an iterative solution method

The linear systems of (4.17) and (4.16) are very large. For a discretization of M panels, -
the number of unknowns is approximately 7M and 8M for (4.17) and (4.16), respectively.
If a direct solution method like Gaussian elimination is used, O(/N?) memory and O(N?)
CPU time are necessary.

If a iterative solution method like GMRES is used, the memory required will be still
O(N?) but the cputime can be reduced to O(N?).

For a linear system of

Az =b
The GMRES iterative method can be summarized as:
1. Guess x
2. Calculate residual r = Az — b
3. Update z to reduce r

4. Repeat till ||r|| small

The iterative method can be applied to (4.17) and (4.16). However, it would be

deceiving to state that the CPU time can be reduced to O(N?) without knowing the
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number of iterations required for solution.

In GMRES solution, the computation complexity is approximately the number of
iterations times the computation complexity of every iteration, which is O(N 2). If the
number of iterations in the solution is the same order as IV, then the total computational
complexity is still O(N3). For O(N?) performance in cputime, it is necessary to have the
iteration number much smaller than the number of unknowns.

The GMRES iteration number, however, is related to the condition number and eigen
value distribution of A. If A has a small condition number, the iteration number tends
to be small. If the eigen values of A are clusfered, the iteration number also tends to
be small. On the other hand, if A has a large condition number and wide spread eigen
values, the iteration number can be very large. In the extreme case, it can be as large as

N.

7.2 TIteration number and preconditioning

721 GMRES iteration number of the surface formulation

Unfortunately, the iteration number of the matrix generated by the surface formu-
lation is very large even for a small problem. Take the MQS analysis of the 216 panel
discretization of a wire of aspect ratio of 6 for example(Figure 7-1). As shown in Table
7-1, even though the number of unknowns is N = 1562, the iteration number is more
than 700 for both the low frequency of 1000 Hz and the high frequency of 10" HZ. The
iteration number is not neglegible compared with NV, and this does not justify the O(N?)

performance in CPU time.

Problem | panel unknown iter
LF(10° Hz) | 216 1562 874
HF(10'7 Hz) | 216 1562 784

Table 7-1: Iteration number of the wire
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FIGURE 7-1: A wire of 216 panels

7.2.2 The condition number and the scaling problem

To investigate the reason of the large iteration number, the condition number of
the matrix for the MQS analysis on the wire example in Figure 7-1 is computed with
MATLAB (Table 7-2). From Table 7-2, it is clear that even though the number of
unknowns is just N = 1562, the condition number of the matrix is about 1.582 10* at the

low frequency of 1000 Hz and about 6.70410° at the high frequency of 107 Hz.

Problem | panel unknown cond iter
LF(10° Hz) | 216 1562 1.582 10* 874
HF(10'" Hz) | 216 1562 6.704 10'° 784

Table 7-2: Condition number and iteration number of the wire

One important fact about the conditioning is that the block matrices of Py, Dy—1,P;
and D, are much better conditioned than the overall system. For the wire example,
the condition number of P, and low frequency P, are about 69, while P, and D; at high
frequencies have condition number close to one because they are almost diagonal matrices
due to the damping kernel. However, the condition number of the linear system is about
16000 for low frequencies, and of order 10'° at the high frequency of 1017 Hz.

The contrast in the decrease of the condition number of P, and D; as frequency
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increases to the increase of the condition number of the overall linear system suggests
that there is strong ill-conditioning caused by the difference of the scales between the
blocks.
A significant source of the scaling problem is the first set of equations in the linear
system, or (4.1)
oF

P _
15, DiE =0

At low frequencies, the entries of P, are close to those of D, if the interaction between
the nearby panels is considered; At high frequencies, however, the diagonal entries of P
are much smaller than those of D;, while both of them are almost diagonal matrices.
At high freqrrencies, the diagonal entry of P; is approximately Z%T with k; of order 1/,
while the diagonal entry of D; is always 5 % due to the singularity term. This observation
agrees with the fact that, for low frequency, should be smaller or comparable to E |
while at high frequency, should be much larger than F due to the skin effect.

The scaling problem can not be solved by scaling the block of P; or D;, because once
one of them is scaled, Py or Dy — I has to be scaled as well. This will transfer the scaling
problem to (4.5), the other set of equations in the linear system. The scaling problem

could be solved by ehmmatmg 2 from the overall system using:

but this involves a matrix inversion which is O(NV3) effort, so it is not practical either.
Basically, the scaling problem occurs when a equation has a different kind of unknowns
with different magnitude. The first set of equations falls into this category, with the
problem showing up in the scaling between P, and D;. A similar problem exists for most
of the other equations in the linear system. A good preconditioner should capture the

scaling information of all the blocks.
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7.2.3 The eigen value distribution and the structure problem

Another important observation from Table 7-2 is that the iteration number at the
low frequency is even larger than that at the high frequency even though the condition
number at the low frequency is smaller. This suggests that there must be a source of the
large iteration number other than the condition number. To investigate this problem, the
eigen value distribution is plotted for both low frequency and high frequency cases(Figure
7-2 and Figure 7-3). From these figures, it is clear that the eigen values are wide spread
at both the low frequency and the high frequency. This is the cause of the'large low

frquency GMRES iteration number.
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FIGURE 7-3: The eigen values at 10'7 Hz
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The reason of the wide spread eigen values must be felated to the fact that the linear
system of the surface formulation consists of different kinds of equations an unknowns.
As a result, the matrix of the linear system consists of more than 20 block matrices
distributed irregularly, and the matrix structure is far from symmetry. Since the eigen
values are as spread out at the low frequency as at the high frequency while the scaling
problem is much less serious at the low frequency, the ill-structuring of the matrix must
be the major source of the wide spread eigen values. A good preconditioner should

capture the sturctural information of the matrix.

7.2.4 An effective and efficient preconditioner

A preconditioner is a matrix A close to 4 to make the alternative system A=Az =

A='b much better conditioned than Az = b because A~1A4 is close to the identity matrix.

To get an effective preconditioner for the linear system of the surface formulation,

the features of the matrix related to the iteration number have to be considered. An

effective preconditioner should capture these features of the matrix, and the computa-

tional cost related to the preconditioner should be small, which includes the forming of
“the preconditioner and the incomplete factorization.

The basic features of the matrix are:

1. Many equations have different unknowns with different scales, so that the related

blocks are not well scaled.

2. It consists of many blocks that form an irregular structure of the matrix. Most of

the blocks are sparse except Py, Do, P and D;.

Obviously the sparse block matrices should be kept in the precondtioner so that the
scaling information and the structural information of them are well represented. To keep
the scaling information of the dense blocks, it would be efficient to replace Py, Dy, P
and D, with P,, f)o, P, and Dy, the diagonal matrices formed by the diagonals of the
original ones. The structural information of the dense blocks is also kept because the

diagonals reflect the position of the blocks in the whole matrix.
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The scaling information of the dense blocks should be well reflected by this method
of sparsification. For example, the scaling information of the first set of equations in the
linear system B

P %% ~DE=0

should be represented by B
~ OF

P Bn DlE = ()
because the diagonal entries are a good representation of the magnitude of all significant
entries.
For the same reason, the scaling information of By and Dy — I in (4.5) can be well
kept by replacing them with 150 and f?o — I.

Therefore, the scheme of forming such a preconditioner A can be summarized as:

1. Keep all the sparse blocks.

2. Replace the Py, Dy, P, and D; with the matrices of their diagonals, ]30, f)o, P, and

D;.

Such a preconditioner is inexpensive to form becéuse it is very sparse. To minimize
the cost of the factorization of the preconditioner, incomplete LU factorization [14] is
used and most of the fill-ins are dropped.

After such a preconditioner is used, the iteration number of solving the linear system
of MQS analysis for the wire example in Figure 7-1 drops from more than 700 hundred to
21 at the low frequency, and 13 at the high frequency( Table 7-3). The iteration number
is smaller at the high frequencies because P; and D, are almost diagonal, and the scaling
difference between these two block matrices is well captured by the preconditioner. The
iteration number is much smaller than the number of unknowns, which is 1562. This
justifies an O(N?) performance in CPU time.

In Table 7-3, LF stands for low frequency, HF stands for high frequency, original

stands for the original system and preconditioned stands for the preconditioned system.
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Problem | LF iter HF iter LF cond HF cond
Original 874 784 1.582e4  6.704el0
Preconditioned 21 13 3.493e4  5.814e5

Table 7-3: The improvement by the preconditioner

Figure 7-4 and Figure 7-5 show the eigen value distributions of the low frequency and
the high frequency matrices after the preconditioner is used. The eigen values are almost

on the real axis and quite clustered in both cases.
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7.3 Numerical accuracy test of the preconditioned
iterative solver

In this section results will be shown from using the above formulation to perform both
magnetoquasistatic and electromagnetoquasistatic analysis of several structures. Mag-
netoquasistatic analysis is performed on a ring, a wire, a multipin connector and a spiral
inductor over a semiconductor substrate ground plane, and the results are compared with
those from using the public domain program FastHenry [18]. For the ring example, the
low frequency inductance extracted with the surface formulation is compared the analytic
formula as well. Electromagnetoquasistatic analysis is performed on a transmission line,

with the results compared with an analytic formula.

7.3.1 A ring example

A ring example in Figure 7-6 is used for the accuracy test of MQS analysis because
the analytic formula of low frequency inductance is available [33]. The ring is 10um
in diameter, having a square cross section of 0.5um by 0.5um. The conductivity used
is close to that of copper. The result of both resistance and inductance is compared -
with the results from the FastHenry simulation program. FastHenry combines multipole
acceleration with a PEEC-like volume method [18]. |

For the kernel linearization and the current computation method switching of the

surface formulation, F, and Fy are set to be 1.510° Hz and 1.510%° Hz, respectively;

FIGURE 7-6: A discretized ring
As shown in Figure 7-7 , both simulation methods match the analytic inductance for
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the low frequency range(The low frequency analytic inductance is 0.04889 nH, computed
with a formula from [33]), and both show the drop in inductance due to the skin effect at
high frequency. However, the convergence of the inductance is more frequency dependent
for the surface method than for FastHenry. As can be seen from the curves for 272 panels
and 848 panels in Figure 7-7, the convergence is slowest around 10 GHz, when the skin
depth is close to the diameter of the cross section.

When examining the resistance, shown in Figure 7-8, the two methods behave very -
differently. The surface formulation captures the frequency dependence of the resistance,
due to the skin effect, without changing the discretization (848 surface panels were used).
For FastHenry, however, the resistance stops increasing at a frequency that is discretiza-
tion dependent. Figure 7-8 shows that the higher frequency resistance computed with

FastHenry changes dramatically for 1440, 3840, and 15360 filaments.
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FIGURE 7-7: Inductance for the ring example

7.3.2 A wire example

The significance of a wire example is that such an open loop problem tests whether
the surface formulation can capture the partial inductance correctly([23]), or whether the

“solution of Maxwell’s Equation can be done with the surface formulation on part of a
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FIGURE 7-8: Resistance for the ring example

closed loop separately, with the influence from the other parts neglected.
Fp and Fy are set to be 1.510° Hz and 1.510'° Hz respectively for the kernel lin-

earization and the current computation method switching of the surface formulation.

FIGURE 7-9: A wire example

The example used is a stfaight conductor wire that is 8 um long, 1 um wide and 1 um
thick. The same conductivity as for the ring example is used. The surface formulation
uses 160 panels over the whole frequency range, while for FastHenry 128, 512 and 2048
filaments are used. The observation is similar to the ring example. As shown in Figure
7-10, two methods show similar inductance over the whole frequency range, and both

capture the inductance drop due to the skin effect. For the resistance result as shown
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in Figure 7-11, the surface formulation still captures the frequency dependency without
changing the discretization while the high frequency resistance computed with F: astHenry

changes dramatically for 128, 512 and 2048 filaments.
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FIGURE 7-10: Inductance for the wire example
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FIGURE 7-11: Resistance for the wire example
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7.3.3 Multipin Connector

The significance of the multipin connector example is that it shows the performance of
MQS analysis with the surface formulation in the multiple conductor case. This examplé
also shows that the high frequency anomalies of FastHenry with curved structures are
not present with the surface formulation. |

For the kernel linearization and the current computation method switching of the

surface formulation, Fy, and Fy are set to be 1.510° Hz and 1.510'° Hz, respectively.

FIGURE 7-12: A 3 by 3 curved connector example

The frequency-dependent magnetoquasistatic inductance (Figure 7-13) and resistance
(Figure 7-14) og the 3-by-3 curved multipin connector (Figure 7-12) are shown. The plots
show three sets of computations, one with the surface formulation using 2088 panels, one
using FastHenry (denoted FH) with 3600 filaments, and one using FastHenry with 14400
filaments. As the resistance plots show, the surface formulation captures the correct
frequency dependence of the resistance, but the FastHenry results are only accurate to
a discretization dependent frequency. From the inductance plot, the surface formulation
also captures the decrease of inductance due to the skin effect. There are a few anoma- ,
lies in the plots generated by FastHenry for the fine discretization due to a well-known

problem with FastHenry’s filament integrals [19].

7.3.4 Spiral Inductor over a substrate ground plane

Another éxample for MQS analysis is a spiral inductor with and without a semicon-
ductor substrate ground plane ( Figure 7-15). The diameter of the spiral is about 100um,
with a 5um by 5um cross section. The ground plane is about 400um by 400um, and is
100pm thick. The conductivity of the spiral is that of copper, and the éonductivity of
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FIGURE 7-13: Inductance for a 3 by 3 curved connector

5

10 ; : .
- R11, Surface 2088
. + + Ri11, FH 3600
10°t  |--- R11, FH 14400
------ R33, Surface 2088
» « R33, FH 3600 P
oL o ° R33FH14400 C e
= A
N o
o) i
T 0%k
10't
s =R X2’ :
10° 10° 10" 10" 10%°

FIGURE 7-14: Resistance for a 3 by 3 curved connector

the ground is .005 that of copper.

| The signiﬁcance of this example is that it shows whether the surface formulation
captures the proximity effect due to the existence of the ground plane. In the example,
the substrate ground plane is separate from the spiral inductor. \

Fy, and Fy are set to be 1.5 10* Hz and 1.5 108 Hz respectively for the kernel lineariza-
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tion and the current computation method switching of the surface formulation. Fy, for
the ground plane is not important because the ground plane has negligible impact to the

spiral inductor at low frequencies.

FIGURE 7-15: A spiral inductor over a substrate ground plane
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FIGURE 7-16: Inductance for the spiral inductor with and without a substrate ground
plane '

As shown in Figure 7-16, the surface formulation matches the inductance computed
by FastHenry over the entire frequency range. Both methods capture the huge drop of

inductance due to the proximity effect. Again, the surface formulation correctly captures
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FIGURE 7-17: Resistance for the spiral inductor with and without a substrate ground
plane

the frequency-dependent resistance over the entire frequency range, but FastHenry does
not, as shown in Figure 7-17. It is worth noting that it is necessary to use more than
21,000 filaments in the substrate ground plane to converge the FavstHenry" results, where

only 2500 panels are needed in the surface formulation.

7.3.5 Transmission‘ Line

To verify that the surface formulation can perform EMQS analysis, the admittance
of a long shorted transmission line was computed and then compared to the analytic
formula for a nearly 2-D shorted transmission line( Figure 7—18). The transmission .lin:e
wires are 37 wm wide, 15 um thick and 10000 pum long. The two lines are separated
by a gap of 27 ym. To compute the admittance using the surface formulation, the two |
wires of the transmission line are discretized into a total of 804 panels. Since the first '
resonance frequency is 15 GHz, fhe frequency of the simﬁlations is set to be from 1 GHz
to 100 GHz to observe resonance peaks.

For the kernel linearization and the current computation method sWitching of the

surface formulation, Fy, and Fy are set to be 1.5 10* Hz and 1.5 108 Hz, respectively.
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FIGURE 7-18: A long shorted transmission line

To compute the admittance using 2-D analysis, the effective inductance Lo, resistance
Ry and capacitance Cp per unit length are computed numerically. To get the unit length
inductance and resistance, MQS extraction is done at fr.y = 10GHz to get the overall
inductance L,.;, and overall resistance Rye;. L = L..; can be used for the frequency
of interest because the lowest frequency of interest is high enough to assume current is
mostly on the surface(Fy =~ 108H z). For the same reason, the rgsistance in the frequency
of our interest ;s assumed to agree with the asymptotic lavx} of \/w, sd that resistance for
any f‘requency. f of interest can be computed with R = Ry.y f/fres- After L and R is
computed, the unit length inductance and resistance are just Lo = L/l and Ry = R/I,
where [ is the length of the transmission line. The unit length capacitance is computed
with the speed of light ¢ and the unit length inductance by using Co = ep/Lo = 1/ (c2Ly).

The analyt’ic‘forr‘nula for the impedance Z and the admittance Y’ is :

,3 = \/sz()Co - in()Co

7, = Totiwlo
i
' 1 — 2B
e
1
Y=2
Z

The results from the surface formulation and analytic formula are compared in Figure
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7-19, and clearly show that the surface formulation correctly captures the resonances.
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FIGURE 7-19: Admittance of the long transmission line

7.3.6 The iteration number of the large examples

The iteration number of the large examples is shown in Table 7-4. The large examples
; are the multipin connector, the spiral with or without a ground pldne, and the shorted
transmission line. In these examples; the number of unknowns are all larger than 5000,
but the iterative method always converges in fewer than 100 iterations. Thé simulation .
of the transmission line example converges in 4 to 10 iterations because the frequéncy

investigated is in the high frequency range.

Problem | panel unknown Min iter Max iter
MQS connector9 | 2088 14850 18 42
MQS spiral2 NG | 2528 17704 5 67
MQS spiral2 WG | 2448 17184 27 81
EMQS transmission | 804 6452 4 10

Table 7-4: Size of the problem and GMRES iteration number
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The Precorrected-FFT acceleration

The preconditioned GMRES method has the performance of O(N?) both in memory
and CPU time. The O(N?*) memory comes from the storage of the matrix, and the O(N?)
CPU time comes from the matrix vector multiplication in every GMRES iteration.

Assume the linear system of (4.17) and (4.16) can be written as
Arx =b

From the preceding chapter, it is clear that only P, Dy, P, and D; in A are dense
blocks, which are basically the discretized form of the monopole and dipole potential
operators. This means the only dense part of the matrix vector multiplication can be
changed to the potential evaluation pfoblem of Pq‘és shown in Figure 8-1, where P is

the potential coefficient matrix while ¢ is the charge vector.

o O\
> | >
I

N Evaluatiohs

% - ( N panels
\Y

Sum over all other panels

FIGURE 8-1: The potential evaluation problem
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In Figure 8-1 ( The figure comes from [38]), there are N charged panels and the
potential needs to be evaluated at the centers of the N panels. This is an O(N?) problem.
But if a matrix sparsification method like the Precorrected-FFT algorithm [38] is used
to reduce the operation to O(V log V), then the whole formulation would be' O(N log N)
in CPU time, because the operations due to the sparse part of A is O(N ). At the same
time, the memory usage will be reduced to O(N) because the dense blocks are not formed
explicitly, and the sparse part of A can be stored with O(N) of memory.

The matrix sparsification techniques can be the Precorrected-FFT algorithm, SVD
algorithm or the wavelet based methods. In the thesis, the Precorrected-FFT method is

used.

8.1 the Precorrected-FFT method

The Precorrected-FFT method is a fast algorithm for potential evaluation. The basic
idea is to separate the potential computation into a far field part and a near field part
depending on the distance of an evaluation point from a panel and to represent the panel -
charge with charges on a 3-D uniform grid for the far field computation.

As shown in Figure 8-2 ( borrowed from [38]), the far field contribution of a panel is
approximated by projecting.the panel charge onto the grid nearby. Then the potential
contribution of the panel to the far field evaluation points is represented by the grid
potential near the evaluation points due to the projected grid charge.

The far field potential contribution from all panels can be done in pa_r_allel' by evalu-
ating the potentiai on all gird points due to the charge projected onto all of them, and
-the grid potential evaluation process is a 3-D convolution that can be accelerated with
the FFT because a 3-D uniform grid is used, and the potential kernel is not direction
dependent.

For the near field contribution, direct computation is used.

The Precorrected-FFT method can be summarized into the following steps:

1. Represent panel charges on grid
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.

FI1GURE 8-2: Precorrected-FFT method

[ anterpolation or projection step ]
2. Calculate grid-charge potentials on grid
3. Interpolate grid potentials onto panels

4. Local corrections

[compute nearby interactions directly |

The summarization comes from [38].

8.2 Polynomial projection scheme

In combining the Precorrected-FFT algorithm with the iterative solver of the surface
formulation, the projection step is crucial. If the collocation projection scheme [38] is
used, then the projection coeﬂiéients will be dependent on different kernels, while the
surface formulation has two different kernels at every frequency, and one of the kernel

Gi1(r) = €22 changes a lot from a close to 1/7 kernel at low frequency to an exponentially

T

damping kernel at high frequency. This means the projection needs to be done for every

frequency, and this is not efficient.
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The polynomial interpolation projection scheme [38] however, generates frequency
and kernel independent projection coefficients. The basm idea is to approximate the
potential field with polynomial expansion, and the potential at one point can be related
to the potential at the vnearby grids by some potential coefficients based on tle polynomial
expansion. The potential coefficients are used as the projection coefficients to project
the charge at that point onto the nearby grids. The projection coefficients for a charged
panel éan be computed by averaging the projection coefficients of the points on the panel.

The only kernel in the surface forfnulation that has not been previously accelerated
with the Precorrected—FFT algorithm is the &— " kernel, where K is imaginary. To show -
the precorrected-FFT algorithm will have no difﬁculty with this kernel, a point source
1s projected onto vertex sources of a 2 by 2 by 2 cube. Then the worst case error at
distance 3 from the cube center is plotted as a function of frequency. Even for a low
order projection, the error is never worse than a few percent(Figure 8-3). The higher
frequency projection is not pursued because in that case the kernel is damping very fast .

so that only near field evaluation is necessary, which is done with direct method.
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FIGURE 8-3: Worst case projection error for a typical example
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8.3 Numerical result of the accelerated formulation

Various numerical examples are used to test the performance of the accelerated for-
mulation. The memory usage and CPU time are measured on a 433 MHz DEC Alpha

workstation.

8.3.1 Comparison with FastHenry

A comparison with FastHenry is done for the two turn spiral inductor over a ground
plane (Figure 7-15) and the multipin connector (Figure 7-12) in the'\ﬂpreceding chapter.

The performance is shown in Table 8-1.

Problem M(FH) M(SF) tLF (FH) tLF (SF) tHF (FH) tHF (SF)
MQS connector9 421 129 2381 1364 13719 684
MQS 2-T spiral WG 458 147 2427 738 2822 559

Table 8-1: Comparison with FastHenry

In Table 8-1, M stands for memory in megabytes, t;r and t5r stand for low frequency
and high frequency CPU time in seconds, FH stands for FastHenry and SF stands for
the surface formulation. |

As shown in Table 8-1, FastHenry is significantly slower than the surface formulation
for both high frequency and low freqﬁency computations. This shows the disadvantage of
a volume method in capturing the frequency dependent resistance aqd inductance with
the same discretization for the whole frequency range. However, FastHenry still could
have an advantage in low frequency extraction because a much coarser discretization can -
be used for FastHenry to capture the inductance and resistance at low frequency.

On the ot}ierhand, the advantage of the surface 'formulation over FastHenry can be
even larger than that shown in Table 8-1 because the surface formulation can achieve

acceptable accuracy at high frequency with less panels.
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8.3.2 Three typical examples

Simulations are performed on three typical examples of different numbers of panels

to show the performance of the accelerated algorithm.

8.3.2.1 A 4 by 4 multipin connector

The first example is a multipin curved connector with 4 by 4 wires (Figure 8-4)
~ discretized into about 4000 panels. Figure 8-5 and Figure 8-6 show the inductance and
resistance extracted with the accelerated formulation for MQS analysis; From the graphs,
it is clear that the '.surface formulation captures the drop of inductance due to the skin
effect, and the asymptotic increase of resistance at high frequency.

For the kernel linearization and the current computation method switching of the

surface formulation, Fy and Fy are set to be 1.510° Hz and 1.510" Hz, respectively.

0.02f

0015 T T T T T T T T .

L (nH)
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" FiGURE 8-5: The inductance of the 4 by 4 connector
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FiGURE 8-6: The resistance of the 4 by 4 connector

8.3.2.2 An 8 turn spiral over a ground plane

The second example is an 8 turn spiral over a thick substrate ground plane (Figure
8-7) discretized into 10118 panels. The diameter of the spiral is about 170um, with a
5um by 5um cross section. The ground plane is about 700pm by 700pm, and is 100pum
thick. The conductivity of the spiral is that of copper, and the conductivity of the ground
is .005 that of copper.

~ For the kernel linearization and the current computation method switching of the
surface formulation, Fy, and Fy are set to be 1.510* Hz and 1.5 10® Hz, respectively.

The inductance and resistance computed with the accelerated surface formulation for
MQS analysis is shown in Figure 8-8 and Figure 8-9. From these Figures, it is clear
that the accelerated surface formulation captures the huge drop of inductance due to-the
proximity effect and the asymptotic increase of the resistance due to the skin efféét at

high frequency.

8.3.2.3 The shorted transimission line

EMQS analysis is performed with the accelerated surface formulation on the shorted
transmission line used in the preceding chapter. The comparison between the admittance
extracted with the surface formulation and that from the analytic formula shown in

Figure 8-10 confirms that the accelerated formulation provides accurate answer in EMQS
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FIGURE 8-8: The inductance of the 8 turn spiral over a ground plane

analysis.
Still, F; and Fy are set to be 1.5 10* Hz and 1.510® Hz respectively for the kernel

linearization and the current computation method _switching of the surface formulation. -

8.3.2.4 The memory and CPU time performance

Table 8-2 shows the memory and cputime performance of the surface formulation

applied to the three examples. In the table, CPU stands for CPU time and M stands for

memory usage.
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FIGURE 8-9: The resistance of the 8 turn spiral over a ground plane
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FIGURE 8-10: The admittance of the shorted transmission line

Problem | panel unknown M(Mb) MIN CPU(s) MAX CPU(s)
MQS connectorl6 | 3712 26400 245 2145 4878
MQS spiral8 WG | 10118 70874 646 2508 3704
EMQS trans | 804 6452 42 41 65

Table 8-2: Performance of the accelerated formulation

8.3.3 Asymptotic performance of the accelerated formulation

Since the Precorrected-FFT algorithm isO(Nlog N) in CPU time and O(N) in mem-
6ry,, the Precorrected-FFT accelerated preconditioned GMRES solver for the surface for-

mulation should have similar asymptotic performance.
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FIGURE 8-11: The memory usage versus the number of ‘panels

4

10

- lLow freequency
——o High frequency

Cputime(s)
-o:d

Number of panels

FIGURE 8-12: The cputime versus the number of panels

Figures 8-11 and 8-12 show the performance in CPU time and memory for 2 turn, 4
turn, and 8 turn spirals over a substrate ground plane. The number of pg%‘nels‘ is around
© 2500, 5000 and 10000, respectively. For all these three examples, FL is set to be 1.510%
Hz and Fy is set to be 1.510% Hz.

.As can be seen from these figures the memory is increasing at close to the same rate
as the number of panels, while the CPU time is increasing slightly faster than the‘number'

of panels. The reasons that the cputime is increasing slightly faster than O(N) include:

1. The CPU time performance of the Precorrected-FFT algorithm is O(N log N ) but
not O(N).
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2. The direct computation in the potential evalutation has larger weight in the overall
computation as the turns of the inductor increases, because the turns are close to

each other.
3. The iteration number increase slightly as the number of panel increases.

The overall performance of the accelerated formulation is close to O(NV) in both CPU

time and memory.

8.3.4 Comparison of different solution methods

A comparison between three different solution methods for the linear system of
the surface formulation is made in Table 8-3 and Table 8-4. The examples for MQS
analysis are a two turn spiral inductor without a ground plane(spiral2 NG), the three
by three multipin connector(connector9) and the eight turn spiral inductor over the
ground plane(spiral8 WG). The EMQS analysis example is the long shorted transmission
line(trans). In these tables, Dir stands for the direct solution with Gaussian elimination,
Dir GMRES stands for the preconditioned GMRES solution without the Precorrected-
FFT acceleration, and FFT GMRES stands for the Precorrected-FFT accelerated pre-
conditioned GMRES solution method.

Table 8-3 is the comparison of the CPU times of the three solution methods, where
h stands for hours, m stands for minutes and d stands for days. The low frequency CPU
time is used for the iterative methods, which represents the worst case performance. -
Table 8-4 is the’comparison of the memory usage of the three solution methods. From
these tables it is clear thét the Precorrected-FFT accelerated GMRES solver outperforms
the unacceleratéd GMRES solver in both memory and CPU time, and both of them -

outperforms the direct solver of Gaussian elimination by orders of magnitude.

8.3.5 The EMQS analysis of the spiral inductor problem

EMQS analysis is performed on a two turn spiral inductor and an eight turn spiral

inductors to observe the coupled inductance-capacitance effect. The two turn spiral has
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Problem | panel unknown Dir ‘ Dir GMRES FFT GMRES
EMQS trans | 804 6452 3.4h 3m 1lm
MQS spiral2 NG | 2528 17742 70h 3Tm om
MQS connector9 | 2322 14850  36%h 1h 23m
MQS spiral8 WG | 10118 74654  217d 8h 1h-

Table 8-3: CPU time of different methods

Problem | panel unknown Dir Dir GMRES FFT GMRES
EMQS trans | 804 6452 1.3Gb 61Mb 42Mb
MQS spiral2 NG | 2528 17742 2e4Gb 666Mb 124Mb
MQS connector9 | 2322 14850 5000Gb 347Mb 129Mb
MQS spiral8 WG | 10118 74654  8.9e4Gb 5Gb 646Mb

Table 8-4: Memory usage of different methods

the same dimension as the one in Figure 7-15 and it is discretized into 1568 panels. The

eight turn spiral has the same dimension as the one in Figure 8-7 and it is meshed into
5888 panels.

By performing EMQS impedance extraction using the accelerated surface formulation,

4the first resonance peak of the admittance of the two turn spiral is found tb be at around

._'210 GHz. The admittance curve of the spiral inductor from 1 GHz to 1000 GHz is plotted

in Figure 8-13.

0 2 4 6 8 10
f (Hz) x 10"

FIGURE 8-13: The admittance resonance peak of the two turn spiral
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Even though the first admiftance resonance peak is located at around 210 GHz far
from the interested frequency range of RF circuits, the effective inductance of the spiral
increases sharply in a lower frequency range due to the impedance resonance. As shown

. in Figure 8-14, the effective inductance of the spiral increases sharply in the 10 GHz range
due to the coupled inductance-capacitance effect. The effective inductance is computed

with Less = ir—”—“.iﬁ@, where Z is the EMQS impedance.
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FIGURE 8-14: The effective inductance of the two turn spiral

Finally, EMQS analysis through the accelerated surface formulation shows that the
effective inductance of the eight turn spiral inductor increases sharply in the GHz range,
as shown in Figure 8-15. In Figure 8;15, the inductance drops a little around 1 GHz due
to the skin effect, but it starts increasing around 5 GHz because of the resonance effect.

For both examples, Fy, is set to be 1.510* Hz and Fy is set to be 1.5 10® Hz.

8.3.6 The convergence rate of EMQS analysis

The convergence rate of EMQS analysis is estimated for a simple example. A wire
of 40 um long, 10 pm wide and 10 pm thick shown in Figure 8-16 is discretized into 24
panels as shown in Figure 8-17. ,

When every panel in the 24 panel discretization is broken into 4 identical rectangular

panels, a 96 panel discretization is formed. The same procedure carried out twice results
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FIGURE 8-15: The effective inductance of the eight turn spiral

FIGURE 8-16: A wire example

FIGURE 8-17: A wire discretized into 24 panels

in a 384 panel discretization and a 1536 panel discretization. EMQS impedance extraction
is performed on the four discretizations at 80 GHz, 100 GHz, and 120 GHz. For every |
discretization, the average amplitude of the admittance at these three frequencies is
computed ( Table 8-5). Fy is set to be 1.510% Hz, and Fy, is set to be 1.510* Hz.

Denote ay, a;, aé and a3 as the average amplitude of the discretizations of 24, 96-,384,
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Number of panels 24 96 384 1536
Average amplitude | 0.325608 0.335130 0.338590 0.337742

Table 8-5: The average amplitude of admittance .

and 1536 panels, then the error between the discretizations can be computed by
eo = abs(a; — ap)

e; = abs(as — a;)
€y = abs(ag - (12)

Since the size of the panels decrease by a factor of 2 every time as the discretization is

refined, the convergence rate can be evaluated as

_ Jog(ei/e0) | log(ez/er)
= Cogti/2) + Togi2) />

For this example, r is 1.7447, which means that the error decreases at the rate close to

that of the panel size.
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Extension to fullwave impedance
extraction

The surface formulation can be extended to fullwave impedance extractioﬁ easily.
Basically, the EMQS assumption in Ampere’s Law is removed. The vector potential and
scalar potential take the same integral form as in EMQS analysis, but with the Green’s
function kernel changed. The same is true for the two surface dyadic integral equations.
The surface form of current conservation and the boundary conditions remain the same.
At high frequency, the fullwave formula for current extraction should be used, which is
very similar to the EMQS formula. At low frequency, the linearization of kernel G4 is”

still necessary.

9.1 Fullwave analysis of time harmonic electromag-

netics

9.1.1 Time harmonic Maxwell’s equations

Time harmonic Maxwell’s equations are:

VxE = —iwpH
VxH = jweE+J
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VV'(GE) =
V- (uH)

I
o

In addition, w1th1n the conductor with uniform conductlwty, Ohm’s’ Law can be

applied:
J=0oE (9.1)

where o is the conductivity.
With the same reasoning used in the EMQS analysis of a time harmonic electromag-

netic field, it can be proved that:
V-E=0

is true inside and outside the conductor.
* - With Gauss’s Law (3.3) and the uniform ¢ assumption, the charge density p is nonzero

only on the surface.

9.1.2 Fullwave analysis for time harmonic electromagnetic field

The equivalent representation of Maxwell’s equations with vector potential and scalar
potentlal for fullwave analysis is well known [1,2,37. With V-4 = —iwept) (Lorentz
gauge), uH =V x A and — -V =FE+ zwA the differential equations for A and ¢ turn
out to be:

V2A — (iKo)?A = —pJ (92)

and

Vi — (iKo)2p = —pe (9.3)

where p is nonzero only on the surface of the conductors S , and Ky = | /liew.

Therefore, the ihtegral equations for A and v are:
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A@) = [ Golz,v)uJw)dy (9.4)
and

9(@) = [ Gofar1) 2Py (9:5)

eiKojz—yl
dr|z—y|

where Gy(z,y) = and V is the volume of the conductors.

9.2 Two dyadic surface integral equations

9.2.1 The first dyadic surface integral equation

The first dyadic surface integral equation is derived for every conductor separately.

| 2 Y2 ¥
b X2 M

FIGURE 9-1: The illustration of the first dyadic surface integral equation

For the inside of the k-th conductor in Figure 9-1, the electromagnetic field satisfies -

Faraday’s Law (3.1) and Ampere’s Law (3.2), which can be written as

VxE = —iwpH | (9.6) -
VxH = (op+ z'_we)E‘ 9.7) -

with J = o E applied. |
Taking the curl on both sides of Faraday’s Law (9.6), using the vector identity V x
(VxE)= V(V‘- F) - V?’E with V- E =0, and also applying (9.7), we have a vector

Helmhotz equation about E inside the k-th conductor
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ViE - (iKy)’E =0 (9.8)

which is homogeneous for the conductor and K; = +/—iwpuoy + pew?.
Applying Green’s Second Identity to (3.14) with z € V, as the evaluation point of

the Green’s function yields a dyadic surface integral equation

[ ey - [ W By = Bl (0:9)

Ony ony,

where Sy and Vj aﬁe the surface and the volume of the k-th conductor,

” eiKlla:—y! :
To make all the quantities on the surface, move z to the interior of Sk, then:
0E(y) , [ 9Gi(z,y) - -
dy — / 9oL\ Y) By)dy = E 9.11
[, Grlm Gy - | =SBy =B (9.11)

where z,y € Sy.
Still a simpler notation is used in which [g %@E(y)dy is the entire integral rather

than a principle-value integral plus an extra term.

9.2.2 - The second dyadic surface integral equation

The second dyadic surfaceintegral equation is derived by considering: all conductors .
at the same time, so that the coupling between the different conductors as shown in

Figure 9-2 can be accounted for.

‘Equation (3.14) can be rewritten as another vector Helmhotz equation:

V2E — (iKy)? = iwpd v (9.12)

which is homogeneous throughout the space.

Applying Green’s Second Identity to (9.12) with z € V' as the evaluation point of the
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FIGURE 9-2: The illustration of the second dyadic surface integral equation

Green’s function yields the following integral equation

[ Gty 8E(y) dy — /?_G%fj_y) B(y)dy = B(@) +iw | nGo(z,y)T(w)dy

where Go(r,y) is the same Green’s function in the integral expression of A and 7.
With -V = E + iwA and A(z) = [, pGo(z,y)J (y)dy, the integral equation above

can be written as:

[, 60t )25 2ay — [ ZHED By + Vo) =0 (0.13)

- Move z to the interior of S, then we have a dyadic surface integral equation that is

based on the electrical field, its normal derivative and the gradient of scalar potential:

[i6ute 2y - [ 2D by + Vi) =0 (0.14)

Again, the singularity in the integration is not removed.

9.3 The current conservation, the capacitive integral
equation and boundary conditions
The surface integral form of the current conservation remains the same as that in

EMQS impedance extraction, because it is just based on V - E=0:
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/c Ei(z) - (n(z) x l(z))dz — /a %(:(yy))dy =0 (9.15)

The capacitive integral equation takes the same form as that in EMQS impedance

extraction

¥(2) = [ Gole,1)"Lay (9.16)

but Gy is the fullwave kernel.

The boundary conditions are the same as in EMQS impedance extraction.

9.4 Numerical simulations

9.4.1 Fullwave analysis of the long shorted transmission line

The same discretization for EMQS analysis can be used for fullwave impedance ex-
traction, ‘and the panel integration problem has been solved in Chapter 6. Still, a low
frequency linearization is necessary to capture the inductive effect correctly. At high
frequency, the fullwave current extraction formula should be used.

The linear system can be solved with the preconditioned GMRES method, and accel-
erated with the Precorrected-FFT algorithm. The Precorrected-FFT algorithm has no
difficulty in the acceleration of Helmhotz kernel with real wavenumber [38]. - |

Fullwave impedance extraction is performed on the long shorted transmission line
example ( Figure 7-18) in ‘the preceeding chapters, and the resulf is ‘(l_:ompared with
that from the analytic fdrmula.- Figure 9-3 shows that fullwave impedénce extraction
-with the surface forinula.tion yields accurate results. Since EMQS impeddncé extraction

-also matches the analytic solution accurately ( Figure 7-19), this means EMQS analysis

-approximates fullwave analysis accurately for this example.

136



0.35

------ Analytic solution
0.3} + + Surface formulation | |

0.25¢

ot
)

o
=

4

Admitance (mho)
=1
o
I s e S
e bt

e

=SS

e

7

Lﬁ‘ i
1

0.051 !

it fal ! i
[ i A i ] i
X I i il ;) ; [t
0 2 4 6 8

A

i
i 4
H 1

10
f (Hz) x 16"

FIGURE 9-3: The fullwave admittance of the shorted transmission line

9.4.2 Limit of EMQS analysis

EMQS analysis can be taken as a good approximation of fullwave analysis when
the size of the structure is small compared with the wavelength. In the long shorted
transmission line, however , EMQS impedance extraction seems to be accurate even
for the case when the size of the structure is three times the wavelength if the sixth
admittance resonance peak is considered ( Figure 7-19).

To explore if it is a special case or a general result, the gap ( d ) between the two wires
of the transmission line is increased to 500 pm and 5000 pm to see if EMQS analysis still
provides similar result as fullwave analysis. The length of the transmission line is 10000
pum, and in the original transmission line example, d is 15 pm. | |

Figure 9-4 and Figure 9-5 show the difference between EMQS analysis and fullwave
analysis when the:gap is significant compared with the length of the transmission line. It
is cle_ar»frdm these figures that the fullwave analysis still gives almost the same position
of the resonance peaks as predicted for the long shorted transmission line with the small
gap of 15 pm. The amplitude estimated from fullwave analysis is also decaying as the
frequency increases and this agrees with the intuition which is based on the fact that the
resistance should increase with frequency.

Several observations from the comparison of EMQS results with fullwave results are

worth to note. First of all, the position of the resonance peaks estimated through fullwave
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FIGURE 9-4: EMQS and fullwave results for d = 500
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FIGURE 9-5: EMQS and fullwave results for d = 5000

analysis is well captured by EMQS analysis. Secondly, the amplitude of the resonance
peak computed thfough EMQS analysis differs a lot from that computed through fullwave

analysis. Basically, EMQS analysis often overestimates the amplitude, and the error tends.

to be larger at higher frequency. The amplitude of resonance peaks can even be increasing

significantly with the increase of frequency, and this is against physics intuition. Finally,

as the gap between the wires increases, the error of the amplitude estimation through -

EMQS analysis also gets larger. These observations suggest that fullwave analysis is

much more reliable than EMQS analysis when the size of the structure is close to or

larger than the wavelength. In other words, it is a special case that EMQS analysis gives

very good approximation of fullwave analysis when the structure is comparable to or
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larger than the wavelength, as has been observed for the long shorted transmission line

with very small gap.
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10

Conclusions and future work

10.1 Conclusions

In the thesis, a new surface integral formulation and discretization approach fqr com-
puting electromagnetoquasistatic impedance of general 3-D conductors is developed. To
develop the new surface fbrmulation, two dyadic surface integral equations that relate the
electrical field to the scalar potential are derived from Maxwell’s equations. In addition,
the surface integral form of V - E = 0 is also derived. All these equations are applicable
- to general 3-D structures because no assumption of geometry is made.

The key advantages of the formulation is that it avoids volume discfetization of the .
conductors and the substrate, and a single discretization is accurate over the entire
frequency range. In addition, the approach does not require a-priori information about‘
proximity effects or the low frequency distribution of the currents. | |

Computational results from a ring, a wire, an on-chip spiral inductor, a multipinn
connector and a transmission line verify that the formulatipn is accurate when the bred—
conditioned GMRES iterative method is used to solve the discretized equations for MQS
and EMQS analysis. Furthermore, a fast algorithm with close to O(N) performance in
both CPU time and memory is devéloped by accelerating the O(NN?) part of the matrix-

vector multiplication of the iterative solver with the Precorrected-FF'T algorithm.
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10.2 Future work

1. 1-D simplification of MQS analysis for thin conductors

A 1-D simplification of the formulation can be used for time and memory efficiency
when a conductor is thin. The basic idea is to assume that the current 1S nonzero
~ only along the length of the conductor. For the currents related with a surface,
the current in the normal d1rect10n is zero because of MQS assumption, while the
current in the tangential direction orthogonal to the length of the conductor should
be negligible compared to the current in the tangential direction aléng the length.
In {39], the 1-D simplification is already developed and tested. The number of
unknowns of the simplified linear system is less than half of that of the original
system. If GMRES and the Precorrected-FFT algorithm are used to accelerate the

solution, a faster algorithm can be developed.

2. High frequency simplification

At frequencies high enough, a substantial simplification can be made because the
P, and D; matrices can be taken as diagonal. Then %—1‘3 can be eliminated from
the linear system. At the same time, the current in the pormal direction can be
represented with charge density on the surface. This gives a linear system with
the number of unknowns about half of that of the original linear system. Again,
If GMRES and Precorrected-FFT algorithm are used to a.cceleratethe solution, a
faster high frequency algonthm can be developed to compute the high frequency

re31stance effectlve mductance and resonance peaks.

For thin conductors, the tangential current orthogonal to the lengthv of the conduc-
tor can be neglected as in the 1-D simplification, and this gives a system with the -
tangential current along the conductor, the charge and the scalar potentlal as the
only unknowns. If the precondltloned GMRES method and the Precorrected-FFT

algorithm is applied to solve the linear system, better performance can be achieved.
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