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Abstract 
 

We have developed boundary integral equation formulas and a corresponding fast 3-D Stokes 
flow simulation program named FastStokes to accurately simulate viscous drag forces on 
geometrically complicated MEMS (micro- electro- mechanical systems) devices. Unlike the 
3-D finite element or finite difference solvers which often take days to run to completion or 
fail when geometry gets complicated, the FastStokes 3.0 simulation program is capable of 
simulating complicated devices such as resonators, accelerometers, and micro-mirrors on PC 
computers in minutes.  
 
The FastStokes 3.0 simulation program is a fast 3-D boundary-element simulation program 
that uses only surface discretizations. The implementation of the Precorrected-FFT algorithm 
in combination with the GMRES algorithm substantially improves the speed of this 
simulation program. An efficient two-step approach that successfully handles the null space 
of the singular incompressible Stokes BEM operators is developed to avoid numerical errors 
and solution discontinuities. An analytical flat-panel kernel integration algorithm is 
implemented in FastStokes and an accurate curved-panel integration algorithm is also 
developed.    
 
Both an incompressible FastStokes solver and a compressible FastStokes solver have been 
developed and tested. They are not only fast, but also accurate. The incompressible 
FastStokes solver solves the steady incompressible Stokes equation; the effectiveness of this 
fast solver has been repeatedly proved by the close matches between numerical simulation 
results and experiments, within engineering accuracy (5-10% error). The numerical 
simulation results of a comb drive resonator, the ADXL 76 accelerometer, and a micro-mirror 
are given. The compressible FastStokes solver solves a linearized compressible Stokes 
equation that is also capable of capturing the weak air compression effect in MEMS devices. 
Therefore, the compressible FastStokes solver is a more general simulation program, and it is 
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especially useful when the strength of the fluid compression effect is uncertain. The solutions 
of the compressible FastStokes are compared with the analytical solutions of the linearized 
compressible Reynolds equation. Numerical simulations of some common structures that may 
exhibit compression effect when packaged in gases are also given.  
 
The development of the FastStokes simulation program makes possible the rapid full 3-D 
fluid simulation of geometrically complicated MEMS devices.   
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Chapter 1  

 
Introduction 
 

 

1.1 MEMS 
 

Micro-electro-mechanical systems (MEMS) are multi-physic systems on single substrates 

using microfabrication technologies that are developed based on electrical integrated circuits 

(IC) fabrication technologies. The “multi-physic” systems may have mechanical components, 

such as beams and gears; or electrical components, such as circuits; or chemical subsystems, 

such as reaction chambers with solutions; or optical components, such as tiny lenses. Those 

components or subsystems are tiny but fully functional. Therefore, MEMS is a combination 

of miniaturization and multi-functionality. The rapid development of MEMS technology over 

the past twenty years not only reveals the great potential of the MEMS industry, but also 

realizes many miniaturization dreams our predecessors were able only to imagine. More 

importantly, the development of MEMS opened a new design space. Based on batch 

fabrication and system integration, MEMS devices are compact, complicated, and 

inexpensive. More and more people are starting to realize that MEMS are the key to many 

tough design projects. In the 70s and 80s, the success of MEMS pressure sensors and 

accelerometers attracted broad attention to MEMS products. During the past ten years, the 

MEMS industry has boomed. The boom has led to the generation of many new concepts, and 

the development of many new products such as optical switches, flat panel displays, and on-

chip detectors. The predicted big markets for these MEMS products have pushed the interest 

in MEMS research to a still higher level.   

 

MEMS devices are usually fabricated on silicon or quartz wafers. A single wafer typically 

contains many dies that can be separated and then packaged individually. Current 
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microfabrication technologies can be classified into two categories: thin-film surface micro-

machining technologies and bulk micro-machining technologies. Thin-film surface micro-

machining technologies are often used to generate thin surface 2-D structures on a silicon 

substrate, such as those early MEMS sensors and actuators. Bulk micro-machining 

technologies are relatively new and not as closely related to the IC fabrication process as thin-

film micro-machining technologies. Bulk micro-machining processes such as DIRE (Deep 

Reactive Iron Etch) and LIGA (an acronym from German words for lithography, 

electroplating, and molding) are capable of generating thick (high-aspect-ratio) structures. But 

at the current stage, true 3-D micro-fabrication is still very difficult.  Figure 1.1 shows a tiny 

spider mite and some MEMS gears fabricated at Sandia National Lab. Obviously, MEMS 

devices are dramatically different from their macro counterparts. The feature sizes, the 

materials, and the fabrication processes may be totally new even to many experienced design 

engineers. MEMS product designs are strongly limited by the microfabrication technologies. 

The following several paragraphs list the key features of MEMS.  

  

 

Figure 1.1: A spider mite and MEMS gears (http://mems.sandia.gov) 

 

MEMS devices are small, with a feature size on the order of 1 to10 micrometers. This is the 

first and most important feature of MEMS. For example, a MEMS micro-mirror is well 

known to be a critical component of the optical switches to be used in the next generation of 
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all-optical networks. A major reason is that MEMS micro-mirrors can be made small enough 

to be comparable with the diameters of optical fibers and complicated enough to accurately 

perform the light-signal-switching function. The current state-of-the-art design integrates 

more than 1,000 micro-mirrors on one single chip to switch light signals from one bundle of 

optical fibers to another bundle of fibers. In addition to the mechanical components, circuits 

are usually integrated on the same chip to accurately control these tiny mirrors.  

 

The second important feature of a MEMS device is that it covers many engineering 

disciplines or multiple physical domains, such as electrical, mechanical, chemical, and 

biomedical. As a result, many MEMS projects require the collaboration of researchers from 

different fields. And there are MEMS research projects in almost every engineering 

discipline. A few interesting ongoing projects are: a micro-engine power generator, 3-axis 

accelerometers, RF MEMS devices, MEMS data storage devices, MEMS heat exchangers, 

MEMS infrared vision systems,  micro fuel cells, and lab-on-chip biomedical detectors 

(http://www.darpa.mil/mto). Most MEMS devices can be categorized into five major 

application areas: sensors, RF-MEMS, optical MEMS, biomedical MEMS/micro-fluidic 

devices, and power MEMS.  

 

The third feature of a MEMS device is its close relationship with integrated circuits. MEMS 

fabrication technologies are based on IC fabrication technologies; MEMS devices may also 

be integrated with IC and the combined system is capable of performing more complex 

functions. From a more general point of view, MEMS fabrication is an extension of IC 

fabrication techniques. Although most companies still prefer to fabricate MEMS and circuits 

separately to reduce the complexity of fabrication processes, experts believe that the 

fabrication costs can be reduced significantly in many cases by integrating MEMS with 

circuits. The iMEMS (Integrated Micro-Electro-Mechanical Systems) fabrication process was 

developed by the Micromachined Product Division of Analog Devices Inc.; it is a well-

developed process that integrates circuits and MEMS on one single chip. This process has 

been used to fabricate many MEMS accelerometers, and it has proven to be a great success.  

 



 
 
 

19

The fourth feature of a MEMS device is its geometric complexity. The special micro-

fabrication techniques make it relatively easy to fabricate geometrically complicated devices. 

For example, a comb-drive structure is commonly used in electrostatically actuated devices or 

capacitance-sensing devices; a single electrostatically actuated resonator may have tens of 

fingers, but some gyro sensors use several thousand fingers in a single device. As a result, 

many MEMS devices are geometrically very complicated.     

 

1.2 MEMS modeling and fluid simulation of 
geometrically complicated MEMS devices 
 

Batch fabrication helps keep many MEMS products at low prices; most of the time, people 

prefer to use large wafers that generate high yields. But the device development costs, as can 

be imagined, are still very high. The expensive fabrication equipment, the high equipment 

operating expenses, the extensive use of manpower, and the long fabrication process make 

developing even simple devices, such as pressure sensors, very expensive. The designers 

usually suffer countless failures before they see the first fully functioning device. Reducing 

process steps and step costs is only one way to reduce cost. Another important approach to 

cost reduction is to optimize the design and avoid making mistakes. A design failure found 

after fabrication means the loss of a large amount of capital and weeks of precious time. 

Accordingly, MEMS development relies heavily on modeling and numerical simulation. Fast 

and accurate simulation tools are highly valued by the designers, as these tools help verify 

designs, improve designs through optimization, and understand design parameters 

quantitatively. Applying CAD tools to device simulation has become a crucial part of MEMS 

product development.  

 

However, available CAD resources are limited, and developing good MEMS simulation tools 

is very challenging since simulations are strongly limited by numerical methods and computer 

resources. Developing high-performance user-friendly CAD software requires theoretical 

break-throughs and handling tremendous numbers of details. Existing CAD software, such as 

ANSYS, ABAQUS, CoventorWare, IntelliSuite, and MEMSCAP CAD tools, is certainly 
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capable of solving many simulation questions, but there are still plenty of problems that 

existing simulation tools cannot handle. One of the toughest among those problems left 

unsolved is the fluid simulation of geometrically complicated MEMS devices.   

 

Quite often air viscosity strongly affects the dynamic performance of air-packaged 

micromachined devices. Because of the narrow gaps and close distances between movable 

and static parts, the viscous damping forces are usually too strong to ignore. Lots of attention 

has been attracted to calculating the viscous drag forces on MEMS devices. But devices such 

as resonators, accelerometers, or micro-mirrors are geometrically too complicated for existing 

simulation tools. Even worse, these kinds of air damping problems are usually exterior 

problems, which means fluid (air) is outside, and discretizing the 3-D fluid domain may 

generate huge numbers of elements or nodes. Numerical approaches using finite-element-

method (FEM) based or finite-difference-method (FDM) based 3-D Navier-Stokes equation 

solvers can only handle simple geometries; they become very time-consuming or fail when 

geometries get complicated [40]. For this reason, many people are forced to use empirical 

equations or simple analytical solutions [30]. But commonly used semi-analytical approaches 

based on simple 1-D or 2-D fluid models require profound understanding of both the theories 

and the devices. Such approaches only give reasonable estimates in special cases and fail to 

achieve sufficient accuracy in general cases [7, 34]. On the other hand, MEMS designers are 

actively developing new products and exploiting new design concepts; new designs tend to be 

more complicated so that they can perform sophisticated functions. With numerous fluid 

simulation problems left unsolved, developing a device-level full 3-D fast solver would be the 

best answer to these tough challenges [32].  

 

We have been working on developing a fast 3-D Stokes equation solver for applications in 

MEMS fluid simulations. The Stokes equation is well known to be an accurate fluid model for 

many MEMS devices packaged in liquid or in gases at a pressure near 1 atmosphere. Because 

of the small feature size of the MEMS devices, even the velocities of fast oscillating parts are 

usually small. This implies a small Reynolds number. Based on the small Reynolds number 

assumption, the 3-D isothermal Navier-Stokes equation can be simplified to the Stokes 
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equation. In the incompressible case, the Stokes equation is a linear equation that is easy to 

solve; in the compressible case, the Stokes equation can be linearized and simplified. These 3-

D linear Stokes models are accurate enough for modeling many geometrically complicated 

MEMS devices such as resonators, accelerometers, and micro-mirrors.   

 

Our goal is to develop a fast, accurate, and memory-efficient solver that can perform fast 3-D 

fluid simulation. Therefore, the numerical solution scheme is also a critical aspect of the new 

simulation program. We chose the boundary element method (BEM) because it has 

significant advantages when applied to solving linear equations. The boundary discretization 

used by BEM generates many fewer elements compared to the volume discretization used by 

FEM or FDM; this dramatically reduces the discretization complexity and the number of 

unknowns. However, BEM generates dense system matrices, while FEM and FDM generate 

sparse matrices that are computationally easy to solve. Solving the BEM-generated dense 

matrix problems used to be computationally expensive, and it was mistakenly considered a 

major disadvantage of BEM. This situation changed substantially after the accelerated BEMs 

were developed. The Precorrected-FFT (PFFT) algorithm [21, 22], which has been 

implemented in several fast solvers, has proven to be a kernel-independent ))log(( nnO  

algorithm; it is not only fast but also accurate. The PFFT-accelerated BEM is consequently 

applicable to the Stokes integral equations.  

 

FastStokes is a fast 3-D Stokes flow solver we have developed [1, 49, 50]. This software 

program solves the incompressible Stokes equation and the linearized compressible Stokes 

equation using the PFFT-accelerated BEM; it is fast, accurate, and memory-efficient. The 

Stokes equations, numerical algorithms, solution schemes, and simulation results will be 

discussed in detail in later chapters.   

 

1.3 Motivation 
 

The nodal network method is another popular method for simulating large systems. If a large 

and complicated physical system can be subdivided into lumped elements, then the nodal 
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network method is an ideal choice for simulating the system. For example, circuit elements, 

such as capacitors, inductors, and resisters, are frequently modeled as lumped elements. KCL 

and KVL are then applied to generate a network system. However, the nodal network method 

does not apply to general cases. Many geometrically complicated MEMS structures cannot be 

subdivided into lumped sub-elements, because the accuracy would be low. Obviously, a fast 

full 3-D simulation program is the best choice for general 3-D problems.  

 

This section lists several well-known MEMS devices to show the importance of a fast 3-D 

fluid simulation program. Because of the complicated geometries of these devices, 3-D 

simulations using FEM-based of FDM-based software usually generate many more unknowns 

than computers can efficiently handle. Some devices, like ADXL76, were designed many 

years ago. But the previous reports of viscous drag force simulations on this well-known 

accelerometer have been far from satisfying [33].    

 

1.3.1 Comb-drive actuators, resonators, and accelerometers 
 

Comb-drive structures have been extensively used as electrostatic actuation or sensing 

components by MEMS designers. The structure usually has two pairs of interdigitated combs, 

with one member of each pair fixed and the other movable. Whenever there is a potential 

difference between a pair of interdigitated combs, electrostatic force pulls the movable comb 

and that motion can be used for actuation. Comb-drive structures are also frequently used as 

sensing parts. The motion of the movable comb changes the capacitance between the 

interdigitated pair; this capacitance change can be sensed and used to compute the 

displacement. As mentioned before, simulating the damping behaviors of the MEMS comb-

drive structure is not easy because of the complicated geometry, especially when there are 

large numbers of fingers. Figure 1.2 shows a micro-machined dynamometer fabricated in 

Sandia National Lab. This dynamometer is used to determine the coefficient of friction by 

measuring the normal and tangential forces. The rotation motion of the small “smooth gear” 

in the middle is actuated by the two sets of comb-drive actuators, the upper set and the right 

set. The left set (only part is shown here) is used to apply normal force, and the lower part is a 
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displacement-sensing component that senses the motion of the beam due to frictional force. 

Hundreds of fingers are used in each set of the comb-drive. 

 

 
 

Figure 1.2: Sandia dynamometer (http://mems.sandia.gov/scripts/images.asp) 
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Figure 1.3: A MEMS resonator (http://umech.mit.edu) 

 

 

The MEMS comb-drive resonator structure shown in Figure 1.3 is very similar to that of the 

comb-drive actuator. The shuttle is in the middle, supported on the thin tethers that are 

attached to the substrate. Only parts of the folded tethers are shown in this picture. The shuttle 

oscillates when an AC voltage is applied to one static comb-drive. Motions of the shuttle 

change the capacitance between the shuttle and the other static comb-drive, and the 

capacitance change can be detected. The MEMS resonator has potential applications in RF 

filters. When the device is packaged in air, the major source of damping is the viscous drag 

force, and this force is strongly dependent on geometry.   

 

Figure 1.4 shows the ADXL76 accelerometer fabricated in the Micromachined Product 

Division of ADI (Analog Devices Inc), using the iMEMS (Integrated Micro Electro 

Mechanical System) process. This accelerometer has been used extensively in auto airbags as 

a collision sensor to trigger airbag deployment. The ADXL76 uses a capacitance-sensing 

principle. The shuttle is free to move along the axial direction; accelerations cause the shuttle 
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to move and the motion is detected using a differential capacitance sensing method. The 

displacement and acceleration are then calculated from the capacitance changes.  

 

Understanding the dynamic performances of these comb-drive structures is very important in 

predicting or controlling the motion of the movable combs; the quality factor, which reflects 

the energy lose of the movable combs due to air viscous damping, is often preferred when 

modeling these actuators, resonators and accelerometers. However, accurately simulating the 

mechanical damping is almost impossible without a fast 3-D simulation program. This 

problem became very significant in modeling ADXL76. Because of the narrow gaps between 

fingers (see Figure 1.4), the viscous damping effect is very strong. An accurate optimization 

is necessary in this case since there are many design parameters. Unfortunately, the critical 

damping effect could not be accurately modeled without a fast solver that can handle 

complicated 3-D geometry. There are many reported efforts to model the air damping effect 

in ADXL76; the closest simulation result was 30% off the actual value [33]. Clearly, so 

inaccurate a result is not very helpful.     

 

 

 

Figure 1.4: ADXL76 accelerometer 
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1.3.2 The MEMS micro-mirror 
 

The micro-mirror has been used extensively in flat-panel projection displays, space 

telescopes, optical switches, etc. Based on applications, there are designs using different 

actuation and sensing principles. So far, the most promising application is the micro-mirror 

array for all-optical routers.  

 

The micro-mirror array that directs light signals directly from fibers to fibers is the core 

component of the all-optical router. It must satisfy strict requirements to perform accurate and 

fast light signal switching [46]. Currently there are many micro-mirror designs using different 

actuation principles, but most designs still use air-packaged thin mirrors to direct light 

signals. By “air-packaged,” we mean the device is packaged in gases with pressure around 

ambient air pressure (1 atm). The gas viscous damping force helps keep the micro-mirror 

mechanically stable so that it is not sensitive to outside incidental excitations. Figure 1.5 and 

Figure 1.6 show an electrostatically actuated micro-mirror. The mirror is sitting above the 

electrodes (not shown here) with two tethers attaching it to the gimbal, and another two 

tethers attaching the gimbal to the substrate. Two desired motion modes are the 

“mirror+gimbal” rotational mode around one axis and the mirror rotational mode around 

another axis.  

 

However, calculating the quality factor is not easy. Because of the complex structure and the 

large aspect ratio of the air gap between the mirror and the electrode, only a full 3-D 

simulation program can accurately predict the viscous damping. The experimental results 

show that the damping force is so strong that some design has a quality factor of 

approximately two, though that was difficult to predict using semi-analytical approaches. 

Optimizing the quality factor has been almost impossible since the designers have had no 

accurate quantitative understandings of quality factor design sensitivities due to the lack of 

good simulation tools.    
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Figure 1.5: “Mirror+gimbal” rotational 
motion of the micro-mirror 

 

Figure 1.6: Mirror rotational motion of the 
micro-mirror 

 

1.3.3 Fluid compression effect 
 

Many studies have shown that air compression can make a significant contribution to the 

dynamic behavior of some MEMS devices [47]. When air is compressed, the compression 

causes a spring force that may change the resonance frequency of the device. This frequency 

shift is clearly indicated by the testing results of the out-of-plane motion of an accelerometer 

[37, 38]. A thin silicon wafer containing a large proof mass supported on a cantilever beam is 

bonded between two glass-covered thick wafers. There are narrow gaps between the proof 

mass and the two thick wafers. Gas damping and spring forces strongly affect the motion of 

the proof mass.  

 

The measured results on this accelerometer were published by Veijola et al. Significant 

resonance frequency shifts were observed (Figure 1 in [38]) when the spring force generated 

by gases compression was increased. (In this case, the researchers changed the pressure in the 

package.).  

 

When device is fabricated using the thin-film micro-machining technologies, the movable 

structures are usually too thin to generate large forces, which means there is only a weak air 
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compression effect. To model the weak air compression effect, we need not only a 

computationally easier model but also a fast solution scheme.  

 

1.4 The organization of this thesis 
 

Chapters 2 to 4 of this thesis summarize related mathematical and numerical background. 

Chapter 5 to Chapter 9 will focus on the contributions of this thesis work, particularly those 

that have been implemented in FastStokes version 3.0.  

 

As a starting point, Chapter 2 uses the simple electrostatic problem as an example to describe 

the major procedures of the PFFT-accelerated BEM. The PFFT (pre-corrected FFT) algorithm 

was specifically developed to accelerate the BEM solvers. When used in combination with a 

Krylov subspace solver, such as GMRES, both the computational cost and memory 

requirement of the BEM solver are reduced substantially.  

 

Kernel integration is an important part of the BEM; Chapter 3 summarizes commonly used 

kernel integration algorithms. An analytical kernel integration algorithm is described in 

Section 3.4 and the Appendix [19]; this fast and accurate algorithm has been implemented in 

FastStokes 3.0.  

 

Chapter 4 summarizes the equations and solution schemes used in the previous versions of the 

incompressible FastStokes solver.  

 

It is well known that discretizing curved surfaces using flat panels may cause significant 

discretization errors; an accurate curved-panel integration algorithm is needed if curved-panel 

discretization is used. Chapter 5 presents an accurate curved-panel integration algorithm.  

 

Chapter 6 describes a major problem found during the development of the incompressible 

FastStokes solver: the singular BEM operator issue, which has not been fully addressed in the 

literature. If not treated properly, this problem might cause large numerical errors and solution 
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discontinuities across closed surfaces. We will discuss this problem in detail and present 

solutions. The two-step method presented in this chapter has been implemented in the 

incompressible FastStokes solver to make it numerically robust [44].   

 

In Chapter 7, we compare numerical simulation results with analytical solution and 

experimental results to show the accuracy of the steady incompressible FastStokes solver. A 

translating sphere, a comb-drive resonator, a micro-mirror, and the ADXL76 accelerometer 

are examined.   

 

Chapter 8 has a description of a linearized compressible Stokes model. This fluid model 

successfully captures the weak fluid compression effect, and it is capable of predicting 

accurate damping and spring forces, the later can be responsible for resonance frequency 

shifts. The major part of this chapter focuses on the derivation of the BEM kernels and the 

boundary integral equations. A simplified linearized compressible Stokes equation is also 

presented. This equation neglects a very small term in the linearized compressible Stokes 

equation, but is much easier to treat numerically.  

 

Chapter 9 uses numerical examples to show the efficiency of the compressible FastStokes 

solver. Numerical comparisons between the linearized compressible Reynolds equation, the 

simplified linearized compressible Stokes equation, and the steady incompressible Stokes 

equation are given. Simulation results show that the new simplified linearized compressible 

Stokes equation accurately captures the weak fluid compression effect. Therefore, the 

compressible FastStokes solver is a more general-purpose solver; it is good for both 

incompressible and compressible cases. Results also show that the incompressible Stokes 

equation, though not capable of modeling the spring forces, does give reasonably accurate 

damping force estimations when the fluid compression effect is weak.  

 

In Chapter 10 we summarize our research work on FastStokes and give a brief conclusion.  
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Chapter 2  
 
Background and basic algorithms 
 

 

Advanced algorithms are the keys to developing a fast simulation program. The PFFT-

accelerated boundary element method makes FastStokes fast and memory-efficient. Before 

touching the details of the Stokes flow problem, this chapter uses the electrostatic solver as an 

example to illustrate the boundary element method and the combined “GMRES+PFFT” 

approach.  

 

Many MEMS fluid problems can be accurately modeled by the steady incompressible Stokes 

equation and the linearized compressible Stokes equation discussed in later chapters (Chapter 

8 and Chapter 9). We choose to use a BEM for solving these equations because BEM is ideal 

for solving linear equations. BEM reduces the complexity of the simulations at the very first 

step, discretization. When applied to solving 3-D problems, BEM only needs the surface 

discretization, which is a 2-D discretization. This boundary discretization makes BEM 

particularly attractive since most of the structures we want to simulate are complicated 3-D 

structures with fluid in the exterior domain.   

 

The PFFT algorithm was developed to accelerate the BEM. When coupled with an iterative 

matrix-vector solver, such as GMRES, PFFT-accelerated BEM has a low computational 

complexity of ))log(( nnO . This is a substantial improvement over the traditional BEM using 

Gaussian elimination method, which is an )( 3nO  method. In addition, the discretization 

advantage of BEM is fully revealed with a solution scheme as fast as those used in FEM or 

FDM. The development of these acceleration algorithms, such as the PFFT algorithm 

( ))log(( nnO ) [21] and the Fast Multi-pole algorithm ( )(nO ) [8], brought new life to the old 

boundary element method.  
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This chapter starts by solving the simple electrostatic problem using the PFFT-accelerated 

BEM. Details of the algorithms are described in later sections of this chapter.  

 

2.1 The electrostatic problem and the corresponding 
PFFT-accelerated BEM 
 

Electrostatic actuation and capacitance-sensing have been used extensively in MEMS 

designs. Mathematically, those are electrostatic problems governed by the Laplace equation. 

Solving the electrostatic problem in complicated 3-D geometry is another difficult topic in 

MEMS simulation, although it is much easier than the fluid solution. Hence, we use it here as 

an example to illustrate the basic solution scheme of PFFT-accelerated BEM.   

 

Given a system in a medium with dielectric constant ε , and assuming the system is in a 

quasi-steady state, the Laplace equation is, 

 

02 =∇ φ        (2.1) 

 

where φ  is the potential. The potential boundary condition of a system with N   objects is 

typically given in the format of,  

 

Nii ,  ...  ,2 ,1, ==φφ       (2.2) 

 

where iφ  is the potential of the ith object. Assuming the potential is purely generated by the 

charge density on the surface of the objects, the charge density can be solved by solving a 

boundary integral equation: 
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where  'q  is the charge density, and yx rr
−  is the distance between point  xr  and yr . The 

charge 'Q  is simply an integration of the charge density over the surface, )()('' ydsyqQ rr
∫= . 

The capacitance can be extracted using 

 

φ
'QC =         (2.4) 

 

To derive the boundary integral equation (2.3), we first assume there is a point charge q  at 

position yr   in the free space; the governing equation (2.1) can then be rewritten as  

  

ε
δφ ),(2 yxq rr

−
=∇       (2.5) 

 

where ),( yx rrδ  is the 3-D delta function. The most straightforward way to solve (2.5) is using 

a Fourier transform. After taking a Fourier transform of (2.5); the analytical solution of the 

potential is solved in the Fourier domain; the solution is then transferred back to the 3-D 

space: 

 

)(1
4

1)( yq
yx

x r
rr

r

−
=

πε
φ      (2.6) 

 

where xr  is the so-called field point or evaluation point, and yr  is the source point. 

yx rr
−
1

4
1
πε

 is the Green’s function (or fundamental solution, or kernel) of the 3-D Laplace 

equation; it represents the response of the system due to a point charge disturbance. The 

Fourier transformation method will be given in detail when we calculate the more 

complicated Green’s functions of the linearized compressible Stokes equation. 
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To derive integral equation (2.3) using the fundamental solution (2.6), we apply Green’s 

second identity and neglect the double-layer integral which represents potential due to dipole 

distribution. Since the potential across the surface is continuous in our problem, there is no 

dipole distribution on the boundary. The potential in the space due to charge distribution on a 

surface is only a 3-D convolution of the charge density 'q with the Greens’ function. Equation 

(2.3) is called the single-layer integral equation of the Laplace problem.  

 

To solve equation (2.6) at the discretized level, we chose to use the standard flat-panel piece-

wise constant collocation approach. The surfaces are discretized using flat panels and the 

charge density distribution is assumed to be constant over the panels. Next, we generate the 

system equations by satisfying the voltage boundary condition at the centroid of each panel: 
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where jq  is the charge on the j th panel. The discretized system equations can be rewritten in 

a matrix-vector form as: 

 

HQ=Φ           

with         (2.8) 
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where Φ  is the potential vector and Q  is the vector of panel charges. Solving (2.8) yields the 

surface charges, which can then be used to calculate the capacitance. As mentioned before, a 

major advantage of BEM is that only the surface is discretized, generating many fewer 

elements than a volume discretization and making the system matrix much smaller. However, 

the integral equation method is a global approach; every point charge affects the potential 

distribution in the entire system. The BEM-generated system matrix H  is accordingly a 
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dense matrix. Since there are efficient algorithms for solving the sparse matrices generated by 

FEM or FDM, it was believed that BEM was more expensive to use than FEM or FDM, even 

though there were many fewer unknowns. Accelerated approaches, which use the PFFT 

algorithm and the Fast Multi-pole algorithm, can solve the BEM-generated dense system 

matrix at low cost, and this has renewed interest in BEM. The next two sections describe one 

acceleration approach, the “GMRES+PFFT” approach, an O(n log(n)) method . 

 

2.2 GMRES  
 
 

The GMRES (Generalized Minimal Residuals) algorithm [29, 36] is a Krylov subspace 

iterative solver. Given a linear system in matrix-vector format, bAx = , where A  is a 

nonsingular square matrix, GMRES starts from an initial guess 0x  and modifies the solution 

nx  at every step to minimize the norm of residual nR  

  

nn AxbR −=       (2.9) 

 

where nx is in the Krylov subspace,  

 
















= − bAAbbK n

n
1L      (2.10) 

 

A commonly used stable approach of doing the minimization is to generate a sequence of 

orthonormal vectors to form the matrix nQ ; these vectors also span the Krylov subspace nK . 

The Arnoldi iteration starting from vector b  is used in this orthogonalization step. The 

following relationship is given by the Arnoldi algorithm, 

 

nnn HQAQ
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35

 

where nH
)

 is an nn ×+ )1( upper Hessenberg matrix. Letting nnn yQx = , we then minimize 

the norm of  

 

nnnnnnnnnnn yHebyHQbQyAQbQAxbQ
))

−=−=−=− ++++ 11
*

1
*

1
*

1 )()()(   (2.12) 

 

to yield ny  and nnn yQx = .  

 

The most expensive computation of each GMRES iteration is the matrix-vector 

multiplication, which costs )( 2nO operations. If the iteration reaches convergence criterion 

ToleranceRm <  at the mth steps, the total computational cost is )( 2mnO . Compared with the 

)( 3nO  direct Gaussian elimination method, the GMRES algorithm is much faster if nm << .  

 

Several critical issues need to be discussed. First, we assume the matrix A  is nonsingular, 

which is not always true. Dealing with a singular matrix is a major topic that will be discussed 

in Chapter 6. Second, the computational cost and memory requirement depends on m , but m  

is not guaranteed to be a small number. Reducing the number of iterations is important for a 

fast and memory-efficient solution scheme. A commonly used efficient approach is 

preconditioning the system matrix. Another way of reducing the number of iteration steps is 

to restart GMRES after a certain number of iterations. In such a case, the intermediate 

solution is used as an initial guess of the new iteration. Third, the GMRES algorithm 

minimizes the norm of the residual, which is guaranteed to be decreasing or unchanged at 

each iteration step. However, this doesn’t guarantee that the solution converges to a finite 

meaningful value monotonically, although the solution usually converges to a meaningful 

value after a certain number of iterations. There are cases when the GMRES fails to converge, 

especially when the matrix is a singular matrix. 

  

2.3 The Precorrected-FFT algorithm 
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The GMRES algorithm is a matrix-free method. It only needs one matrix-vector product in 

each iteration step, and it does not require the matrix to be explicitly stored and used [21]. 

This matrix-free property offers a potential way to save CPU time and memory. The 

accelerated BEM methods have been developed to accelerate the matrix-vector multiplication 

step by calculating the matrix-vector product approximately without using all entries in the 

system matrix.  

 

In equation (2.8), every element in the system matrix represents the potential at a field point 

due to the charge distribution at the source point. This interaction is strong when the field 

point is close to the source point, and weak when the field point is far from the source point. 

Accordingly, the number of larger entries in the system matrix, which represent interactions 

between neighboring panels, is )(nO  if the number of neighboring panels is always smaller 

than a number k , which is true unless the panels are clustered into groups. Note that the 

BEM-generated system matrix is dense and the direct matrix-vector multiplication uses 

)( 2nO  operations. The weaker far-field interaction calculations must have cost 

( ) )(~)()( 22 nOnOnO −  operations. The Precorrected-FFT (PFFT) algorithm described in this 

section uses an approximate approach rather than calculating matrix-vectors directly, so that 

the computational cost is reduced to O(nlog(n)).  

 

The basic idea of the PFFT algorithm is as follows: separate the potentials due to nearby 

charges and far-field charges, and treat the far-field interactions in an approximate way using 

a uniform FFT grid and the FFT algorithm. Nearby interactions are usually strong due to the 

singular BEM kernels; they are computed directly using an analytical (or an accurate) kernel 

integration algorithm to avoid large numerical errors. The following are the four major steps 

of the PFFT algorithm:  

 

a.   Project the panel charges onto the FFT grid: panelprojectiongrid QWQ = ; 
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b.  Compute grid voltages due to grid charges using the FFT. This step can be 

expressed as ( ))()( gridgridgrid QFFTHFFTIFFT ⋅=Φ ; 

c.   Interpolate the grid voltages back to panel voltages:  
gridioninterpolatpanel Φ=Φ W ; 

d. Directly compute nearby interactions and use the results to replace the 

inaccurate nearby interactions that go through the grid.  

 

The cost of using the PFFT algorithm is dominated by the cost of the FFT step, which is 

( log( ))O n n . The projection and interpolation are local operations that cost only )(nO  

floating-point operations. Hence, the total computational cost of the PFFT-accelerated BEM 

is ( log( ))O n n . The four steps of the PFFT algorithm are illustrated by Figure 2.1. 

 

 

Figure 2.1: Four major steps of the PFFT algorithm 

 

 

Projection  
 

The purpose of introducing a uniform grid is to calculate approximately the far-field 

interactions; therefore the projection step must guarantee the accuracy of the far-field 

interactions. One way of projecting the panel charges to nearby grid point charges is through 

the help of far-field testing points. The charges at the grid points are calculated by forcing the 

potentials generated by the grid charges to equal the potentials due to the panel charges at 

those testing points.  
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Another straightforward way to calculate the projection operator is using the idea of local 

moment matching. For the sake of simplicity, we assume the closest grid point to the panel is 

picked as the origin, and let 
yx

yxG rr
rr

−
=

πε4
1),( . The potential at point xr  due to panel 

charge density 'q  is  )(),()(')( ydsyxGyqx rrrrr
∫=φ , which can be expanded in a Taylor series 

around the origin if the size of the panel is much smaller than the distance from the evaluation 

point xr  to the panel centroid.  
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(2.13) 

where ∫= )(' ydsqq r , “at origin” means 0=iy , and jΦ  and jkΦ  are the first and second-

order moment around the origin, i.e. 
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      (2.14) 

 

L  in (2.13) is the size of the panel, and D  is the approximate distance from the origin to the 

evaluation point xr . If DL << , the above expansion only needs lower-order moment terms to 

be accurate. A similar expansion of the potential due to N  point charges at the neighboring 

grid points is expressed as 
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where, m
j

m
j y=Ψ  and m

k
m
j

m
jk yy=Ψ  are the first and second-order moments of point m  with 

respect to the origin, and mc is the weight of the projection we wish to solve.  A moment 

match leads to:  
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The unknown weight mc  can be solved and the projection of the panel charge onto the mth 

grid point is ( )∫ )(' ydsyqcm rr .  

 

Convolution  
 

A convolution in the 3-D space can be easily calculated as a multiplication in the frequency 

domain, so Fourier transformations are used in this step. The Fourier transform of the grid 

kernel data )(~ gridHFFTH =  is calculated once and stored, where ),(grid jiH  expresses the 

relationship between the potential on grid point i and a point charge at grid point j, i.e., 

)(
)()(4

1)(),()( gridgridgridgrid jq
jxix

jqjiHi rr
−

==Φ
πε

.  The convolution is calculated using an 

FFT, followed by a multiplication, and an IFFT, i.e., ( ))(~ gridgrid QFFTHIFFT ⋅=Φ ; so the 
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computational cost of this step is dominated by the cost of FFT, which is well known to be 

))log(( nnO .  

 

Interpolation 
 

After the potentials at the grid points are calculated, we only need a local interpolation 

scheme to compute the approximate potential solution at the centroid of the panels. A 

polynomial interpolation is the simplest one: gridioninterpolatpanel Φ=Φ W , where ioninterpolatW  is the 

interpolation operator.  

 

Pre-correction 
 

From the discussions on the previous page, we know that the potential solution panelΦ  is only 

an inaccurate solution that contains two parts: the accurate potential solution due to far-field 

charge distributions, and the inaccurate potential solution due to neighboring panel charges. 

The pre-correction step replaces the inaccurate neighboring interactions with accurate ones.  

 

Let panel
neighbourk,A  be the accurate neighboring interactions calculated using a direct kernel 

integration algorithm; an analytical kernel integration algorithm for flat polygons is discussed 

in the next chapter. The inaccurate neighboring interactions are calculated again using the 

projection and interpolation operators. Note that both projection and interpolation are local 

operations, so we only need to calculate nearby grid potentials due to nearby grid charges in 

the second step. The potential on grid point i due to a point charge at grid point j is simply 

)()(4
)(

jxix
jq
rr

−πε
; FFT’s are not necessary since we only calculate neighboring interactions. 

Let  neighbourprojectiongridioninterpolat qWHW  represent the inaccurate neighboring interactions; the 

following pre-correction step replaces the inaccurate nearby solutions:  
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neighbourprojectiongridioninterpolatpanel
neighbourk,

panel
k

panel
k qWHWA −+Φ=Φ    (2.17) 

 

This step is also a local operation that costs )(nO . So the final computational cost of 

calculating the matrix-vector products using the PFFT algorithm is only ))log(( nnO . 
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Chapter 3  
 
Kernel integration algorithms 
 

 

Kernel integration is a critical step of the BEM; integration accuracy directly impacts the 

accuracy of the final solution. It is also a tricky step because there might be different 

algorithms that suit different BEM kernels at different levels of accuracy requirements. This 

is especially true in the singular case (or nearly-singular case), when the evaluation point is on 

(or close to) the panel. Therefore, developing a fast and accurate kernel integration subroutine 

often requires the combination of multiple algorithms. This section discusses several flat-

panel kernel integration algorithms. A new curved-panel integration algorithm will be 

presented in Chapter 5. 

  

The algorithms introduced here are mainly for the integration of 
r
1  type weakly-singular 

kernels, or strongly singular kernels and hypersingular kernels with Cauchy Principle Values 

(CPV). 

  

3.1 Cubature method 
 
 

The cubature (or quadrature) method is the easiest and usually the most efficient one if the 

integrand is a smooth function over the integration domain. An online Encyclopedia of 

Cubature Formulas can be found at: 

 http://www.cs.kuleuven.ac.be/~nines/research/topics/ecf.html.  

 

However, the cubature method may not be accurate enough when applied to non-smooth 

functions, unless special cubature formulas are used.  Increasing the cubature formula order 
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and number of cubature points does not help much. For example, certain cubature formulas do 

not work in integrating 
r
1  type kernels when the evaluation point is in the integration domain. 

The reason is that 0=r  if the evaluation point happens to be at the cubature point. And this 

often happens because the panel centroid is usually picked both as the evaluation point by the 

collocation scheme, and the cubature point by the cubature formulas. Changing cubature 

formulas or applying a subdivision approach (see Figure 3.1), may avoid divided-by-zero, but 

the accuracy is typically not good enough. Generally speaking, the cubature formulas 

developed for smooth functions do not work well when applied to singular integrands or 

nearly-singular integrands, because they cannot capture the singular behavior of the 

integrands. It is suggested that other methods such as the analytical method or the semi-

analytical method be used in the singular case. Or a de-singularity approach (please refer to 

Section 3.4) be performed to remove the singularity before applying the cubature formulas.  

 

 

Figure 3.1: Subdivision of a triangle panel 

 

3.2 Semi-analytical method 
 
 

The semi-analytical method is a numerically more robust approach. This method calculates 

the inner integration of the two dimensional integration analytically, and uses a numerical 
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approach, such as Gaussian quadrature, to calculate the outer integral. It is numerically 

cheaper than the analytical method. A particularly attractive feature of this method is that a 

coordinate transformation (from Cartesian coordinate system to polar coordinate system) can 

remove the singularity of the 3-D 
r
1  type kernels.  

Here we use the Helmhotz kernel, 
r

eikr

, as an example to illustrate this method. The Helmhotz 

kernel is a weakly singular kernel with 
r
1  type singularity; it is similar to the unsteady Stokes 

kernel but much simpler.  

 

 

 

Figure 3.2: A flat panel in a polar coordinate system 

 

Consider integrating the kernel in a polar coordinate system whose origin is the projection of 

the evaluation point on the flat panel plane (see Figure 3.2): 
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If the projection of the evaluation point is outside the flat polygon, then some parts of the 

integration domain need to subtract. This can be decided by checking the sequence of the 

vertices PVV jj  and ,, 1+ , which form a triangle. Since the corners are named counterclockwise 

in Figure 3.2, define:  
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false1-
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PVVsign jjjj  

 (3.3) 

 

A shortcoming of this algorithm is that the outer integral will not be accurately calculated by 

the Gauss quadrature approach if P is very close to the edge. A subdivision can be applied to 

divide the line integral from  1+→ jj VV to two line integrals of  ' PVj →  and  ' 1+→ jVP , 

where 'P  is the projection of  P  on line  1+→ jj VV . Increasing the number of quadrature 

points also helps.  
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3.3 Analytical method 
 
 

Accuracy is the unbeatable advantage of the analytical methods. Although analytical kernel 

integration algorithm is not as fast as some numerical approaches, the kernel integration part 

in the PFFT-accelerated BEM solution scheme only costs )(nO , which is not the dominant 

cost. But from the accuracy point of view, the nearby interactions calculated by the kernel 

integration algorithm strongly affect the accuracy of the final solutions. So using the 

analytical kernel integration algorithm may significantly improve the accuracy at low cost. 

 

In this section we discuss the analytical integration scheme for integrating  

 

,...1,0        ),,(

flat
12 =∫∫ + nds

r
zyxp

n               (3.4) 

 

over flat polygons. Here r  is the distance between the evaluation point and the panel, and p  

is a polynomial of x , y , and z . It is assumed that n  in the above equation is an integer. This 

algorithm is based on Newman’s analytical algorithm for  ),,(

flat

ds
r

zyxp
∫∫ and  ),,(

flat
3 ds

r
zyxp

∫∫ . 

To make this algorithm even faster, we add a recursive scheme for solving the line 

integrations. We also generalize Newman’s algorithm to calculate integrals in the form 

expressed by equation (3.4). 

 

First, a local coordinate system ( )ζηξ ,,  is set up such that the panel is put in the ηξ −  

coordinate plane. Major computations are finished in the local coordinate system and the 

solutions are then transferred back to the global system. Newman’s kernel integration 

algorithm starts from computing the potential due to constant dipole and source distributions. 

A recursive scheme with three recursive equations is then applied to extend the potential 

solutions due to lower-order source and dipole distributions to those due to the higher-order 

ones. This recursive scheme, together with another recursive scheme we added to solve the 
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line integrals, makes this analytical algorithm not only accurate but also fast, especially when 

multiple kernels need to be calculated simultaneously. Obviously, this makes the analytical 

kernel integration algorithm a good candidate for integrating the multiple Stokes kernels.  

 

A detailed scheme for solving integrals in the form of ds
r

zyxp
∫

),,(  and ds
r

zyxp
∫ 3

),,(  is 

given in the Appendix.  

 

In general, if the integral is not in the form of the above source and dipole distributions but 

contains higher-order singularity, it is suggested that two sets of integrals ds
r

zyxp
n∫ +12

),,(  and 

ds
r

zyxp
n∫ +32

),,(  be calculated simultaneously using the given recurrence schemes. Some of the 

formulas in the Appendix need to be changed correspondingly. The following equation may 

be used to modify the formulas: 
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              (3.5) 

 

where Z  is the coordinate of the evaluation point in the panel normal direction in the local 

coordinate system.  

 

The analytical solutions discussed here are accurate most of the time. However, one must be 

cautious with those equations. First, the solutions of some integrals are infinite when the 

evaluation point is on the panel, such as ds
r∫ 3
1 . Second, the numerical stabilities of the above 

recurrence schemes need to be checked. If the evaluation points are far away from the panel, 

those integrals can be easily computed using cubature formulas. But the analytical algorithms 
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may not work well in such cases; some numerical instabilities have been noticed. We suggest 

using the cubature method whenever required accuracy is guaranteed. 

 

3.4 De-singularity approach 
 
 

As mentioned before, the cubature method is a cheap and efficient method for integrating 

smooth functions. Most 3-D kernels are smooth function when the evaluation point is far from 

the panel. The difficulty only happens when the evaluation point is on the panel or very close 

to the panel. Figure 3.3 shows the singular performance (the sharp spike) of the singular 

function, which is difficult to capture with the regular cubature method. For 
r
1  kernel, it is 

clear that the analytical method works fine. But so far there is no analytical method for 
r

eikr

 

kernel, and this may also be true for other weakly singular kernels with 
r
1 type singularity.  

 

The de-singularity approach is a combined method. As we know 01lim
0

=







−

→ rr
eikr

r
, this 

motivates us to apply the cubature method to the non-singular part of the kernel, 
rr

eikr 1
− , 

which is a smooth function, while the 
r
1  singular part can be calculated using the analytical 

method.   

 

For kernels with other type of singularities, this de-singularity approach also works. 
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Figure 3.3: A singular function 

 

 

3.5 The strongly singular and hypersingular kernels 
 

Given a 3-D kernel with 
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0r sr
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      (3.6) 

 

the kernel is  
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     (3.7) 

 

Weakly singular kernels are integrable kernels. Consider integrating a weakly singular kernel 

over a circle with radius a  when the evaluation point is at the center: 
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However, the integration of strongly singular kernels and hypersingular kernels in the 

singular case may not be a finite number. Although the integral equation is physically 

meaningful, it doesn’t guarantee that any part of the kernel integration is mathematically 

finite. For example, as mentioned before, ds
r∫ 3
1  is infinity if the evaluation point is right on 

the panel. Fortunately, ds
r∫ 3
1  only appears as part of the double-layer kernel in the steady 

incompressible Stokes pressure integral equations. The double-layer integral is zero when the 

fluid motion is perturbed by the motion of rigid bodies.  

 

If the kernel has Cauchy principle value, like the single-layer pressure kernel of the 

incompressible steady Stokes equation 3r
yx ii − , then the integration is a finite number if the 

evaluation point is on the panel but not on the edges. This can be proved by a similar 

integration as (3.8); the value of the integral is zero due to anti-symmetry. Solving this 

integration is easy if the analytical kernel integration algorithm is applied.  

 

3.6 A conclusion 
 

A good kernel integration scheme is crucial for a successful BEM solver. If multiple kernels 

are involved and a setup step is needed, a combinational approach that avoids repeating the 

setup step is usually the optimal solution. The integration scheme of the complicated 

linearized compressible Stokes kernels will be discussed in later chapters.  
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Chapter 4 
 
The steady and unsteady incompressible 
FastStokes solvers 
 
 

A fast 3-D Stokes equation solver has many applications in modeling MEMS devices. We 

have applied the PFFT-accelerated BEM to the Stokes integral equations and developed a 

FastStokes simulation program. Details about the PFFT accelerated BEM solution scheme 

have already been given in Chapter 2. This chapter covers some basic topics related to the 

Stokes flow and the FastStokes simulation program. Section 4.2 and 4.3 of this chapter 

summarize the critical aspects in deriving the steady and unsteady incompressible Stokes 

integral equations; detailed derivation procedure of more complicated linearized compressible 

Stokes integral equations is given in Chapter 8. Section 4.4 discusses a major modification of 

the PFFT algorithm when applied to the Stokes problem, which is a vector problem.  

 

Before we touch the integral equations, let us briefly talk about Stokes flow and some key 

assumptions.   

 

4.1 The Stokes flow and the Stokes equations 
 

A viscous flow with a very small Reynolds number is called a Stokes flow or a creeping flow 

[13, 14, 24]. The Reynolds number is defined as ν
UL=Re , where U is the velocity, L is the 

characteristic length, and ν  is the kinematic viscosity of the fluid. The Reynolds number is 

frequently used to determine which is dominant between the inertia and the viscous effects, 

since 
force viscous
force inertiaRe ∝ . Given a fluid flow with a low Reynolds number (Re<<1), it is clear 

that the viscous force is dominant and the inertia force may be neglected to reduce the 
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complexity of analysis. Low Reynolds number flow has many applications, especially in 

modeling the slow fluid motions generated by small structures. Accordingly, many MEMS 

fluid problems may be modeled by the Stokes equation. The small feature size of the MEMS 

devices implies a small velocity even if the movable parts of the devices oscillate at high 

frequencies. Our goal is to develop a fast Stokes equation solver and apply it to modeling 

MEMS fluid problems.  

 

Besides the low Reynolds number assumption, we have also assumed that the fluid is 

continuous when deriving the Stokes equation. This is an accurate assumption for liquids; it is 

also good for simulating gases in MEMS devices packaged around the ambient air pressure (1 

atm). But this assumption needs to be checked carefully when applied to vacuum-packaged 

MEMS devices, because the mean free path increases inversely proportional to the pressure. 

If the mean free path of the gas molecules is large enough to be comparable to the feature size 

of the devices, the interactions between molecules and structure surfaces affect the motion of 

the molecules. In such cases, the flow should not be assumed to be continuous. The Knudsen 

number, defined as 
size feature
path freemean 

=nK , is a non-dimensional number that is often used to 

justify the applicability of the continuity assumption. Generally speaking, the continuity 

assumption causes an error within engineering accuracy (5% error) if 01.0~1.0<nK . For 

simple problems that can be modeled by 1-D or 2-D fluid models, adjusting parameters is an 

easy way to compensate for the gas rarefication effect. Such simple adjustments are usually 

also geometry-dependent, which makes it difficult to extend to general 3-D modeling [49].  

 

In addition, we have also assumed that the device being modeled is in an isothermal 

condition. It is true that heating effects generated by viscous forces and electric currents may 

cause temperature rises, sometimes quite significantly, but the temperature gradients in 

MEMS devices are usually small due to the excellent thermal conductivity of silicon and 

polysilicon. And solution variations caused by temperature rises can be easily compensated 

for by adjusting the parameters accordingly.  
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4.2 Integral equations of the steady Stokes flow 
 

The incompressible Stokes equation is derived from the incompressible Navier-Stokes 

equation by neglecting the nonlinear convective term. The momentum equation and the 

continuity equation of the unsteady Stokes flow are: 
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Here ρ  is the density of the fluid, u  is the velocity, µ  is the viscosity, and P  is the pressure. 

If the fluid is assumed to be steady, or if the fluid motion is purely perturbed by the motions 

of the micro-scale devices and not by the outside excitations (this guarantees that the velocity 

is small), scale analysis indicates that the acceleration term and the nonlinear convective term 

in the momentum equation are both negligibly small, and the result is the governing equation 

of the steady Stokes flow without body forces: 
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In order to derive the boundary integral equation, it is necessary to find the fundamental 

solutions or the Green’s functions of the steady Stokes problem first. We assume there is a 

point force at 0xr in the free space with strength ( )0x-xδg rrr . The corresponding governing 

equations are: 
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Solving the above equations yields the fundamental solutions of velocity, pressure, and stress 

tensor due to the point force [14, 24]: 
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Note the repeated indices are Einstein summations. The stress ikσ  of the fluid is defined as: 
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and the surface force is kiki nf σ= .  

 

Next, we derive the velocity boundary integral equation using the Lorentz reciprocal identity 
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where ijiu σ and are the velocity and stress tensor of flow A, and  ''  and ijiu σ  are the velocity 

and stress tensor of flow B. It is assumed that both “flows” are solutions of the same fluid 

domain due to different boundary conditions. In addition, there is no force inside the fluid 

domain. The Lorentz reciprocal identity is also called the Green’s second identity applied to 

the Stokes flow problem. It is a powerful tool because it gives information about an unsolved 

flow A (stress or velocity solutions), based on the solutions of another flow B and the 

boundary conditions of flow A. When applied to deriving the boundary integral equations, the 

velocity and stress solutions of flow B are the fundamental solutions of the Stokes equation. 

We integrate (4.7) over the entire 3-D fluid domain and apply the divergence theorem to 

convert the volume integral to a surface integral. The velocity integral equations for a point 

0xr outside the fluid domain, inside the fluid domain, and right on the fluid boundary D  are 
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where jf  in the above equation is the surface force distribution, ijG  is the single-layer kernel 

of the velocity integral equation, ijkT  is the double-layer kernel, 0xr  is the position of the field 

point, and xr  is the position of the source point. Note that the integral at infinity is zero since 

velocity and stress decrease at the speed of 1−r and 2−r , respectively. So the above integral 

equations also work for problems in an infinite fluid domain. The superscript PV indicates 

the principal value when the point is right on the boundary and the double-layer jump is not 

considered. The double-layer jump on smooth surfaces is:  
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The double layer jump is a mathematical jump that describes the discontinuity due to dipole 

distributions. Equation (4.9) further indicates that the double-layer integral of a non-

deforming closed surface (velocity is the same so that they can be taken out of the double 

layer integral sign of (4.8)) is zero if the evaluation point is in the fluid domain (outside the 

body surface D  in (4.9)). If the evaluation point approaches the boundary from the side of the 

fluid domain (outside D) until it is “right on” the boundary D , we have to keep the solution 

continuous and apply the value of the “outside D” case, which is zero. So we simply neglect 

the double-layer integral since most of the problems we want to model are related to rigid 

bodies. Then we have a single-layer velocity integral equation that works both inside the fluid 

and “right on” the boundary defined by the rigid body: 
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The corresponding pressure integral equation is  
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Again, the single-layer integral expresses velocity due to point force distribution jf  on the 

boundary. We only give the derivations for translational motions here; similar derivations are 

also applicable to the rotational motions. Therefore, the velocity integral equations above are 
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valid as long as the fluid motion is caused by the motions of rigid bodies. However, the 

double-layer integrals are not necessarily zero in the flexible body case. 

 

4.3 Unsteady Stokes flow integral equations 
 

In the unsteady case, the governing equations (4.1) are still linear. In order to meet the 

popular demand for frequency response solutions, we have chosen to create a frequency 

domain solver. We first assume the motion of the fluid is generated by the oscillating motion 

of the devices; we then apply a time-harmonic assumption to (4.1) and assume all variables 

are sinusoidal functions of the oscillation frequency. Given an oscillating point force at 0xr  

with strength ( )0x-xδeg ti rrr ω , the velocity and pressure are assumed to be titi Peeu ωω  and r . 

Equation (4.1) in the frequency domain is: 
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Solving the above equations leads to the fundamental solutions of the unsteady 

incompressible Stokes flow.  The integral equations of the unsteady Stokes equation are 

similar to those of the steady one, but with frequency-dependent kernels. A frequency 

parameter is defined as µ
ωρλ i−=2 , where ω  is the oscillation frequency of the object that 

induces the fluid motion, and 1−=i .  The detailed derivations of the integral equations are 

not given in this section. We will focus on the derivation procedures in Chapter 8 when we 

derive the fundamental solutions of the linearized compressible Stokes integral equation. 

Here, we simply list the single-layer velocity integral equation. Discussions and comparisons 

with the linearized compressible Stokes equation will also be given in Chapter 8. The velocity 

integral equation of the unsteady Stokes flow is given by Pozrikidis [24]: 
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             (4.13) 

 

The solution of surface forces for the unsteady Stokes equation is also a function of 

frequency, and it is usually complex. The real part of the surface forces is the damping force 

solution, while the imaginary part is the spring force solution. Because of the mass 

acceleration term in the momentum equation, the forces are not necessarily in phase with the 

velocity. The pressure integral equation and kernel are still the same.  

 

A rather difficult issue in solving the unsteady Stokes integral equation is the kernel 

integration, because the kernel in (4.13) is a fast-decaying oscillating kernel. The kernel, 

though it looks like a mix of weakly singular kernels, strongly singular kernels, and 

hypersingular kernels, is actually just a weakly singular kernel because of the cancellations 

when 0→r . This can be shown by a series expansion. However, on the other hand, the 

cancellation makes numerically integrating the kernel very difficult. Some numerical 

procedures are unstable. The kernel integration will be discussed in Chapter 8 when we 

compare it with the even more complicated velocity kernel of the linearized compressible 

Stokes equation.   

 

The unsteady Stokes equation has more applications than the steady Stokes equation. But in 

general, the quasi-static assumption is accurate enough for many air-packaged MEMS 

devices.  When the frequency is low and the mass acceleration term makes trivial 
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contributions, the real part of the unsteady Stokes solution converges to the solution of the 

steady Stokes equation. The imaginary part, as can be expected, is almost zero.  

 

4.4 The PFFT algorithm for the Stokes problem   
 
 
The PFFT algorithm described in the previous chapter works in both one-variable (scalar) and 

multi-variable (vector) problems. But the memory and CPU time usages will not be 

minimized without an optimal organization. This section focuses on a special topic of the 

PFFT algorithm when applied to the Stokes problem, that is, sequencing the FFTs and IFFTs.  

 

The Stokes velocity integral equation has three velocity components, three force components, 

and nine kernels. Among the nine kernels, only six kernels are independent since jiij GG = . 

Given U , the GMRES algorithm is applied in FastStokes to calculate F  using the equation 

GFU = . The PFFT algorithm is further applied to accelerate the matrix-vector 

multiplications of GMRES. The FFTs of the grid kernels )(~ gridgrid
j jkk GFFTG =  are calculated 

and stored so that they can be used repeatedly. The projection, interpolation, and pre-

correction operators are still the same in the multi-variable problem; they are applied 

repeatedly to all variables.  

 

The second step of the PFFT algorithm is a convolution step which includes 2 FFTs (to be 

more precise, one FFT and one IFFT) in the scalar case, and this is a computationally 

expensive step.  A naive approach of duplicating the same idea and applying it in the Stokes 

problem (a vector case) can be described as 

 

( )( )gridgrid
3

1

grid ~
kjk

k
j FFFTGIFFTU ⋅= ∑

=

                (4.14) 

 

A total of 18 FFTs are needed for every matrix-vector calculation step. A more efficient way 

that avoids repeating the calculations of  )( grid
jFFFT  is to save the result of 
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)(~ gridgrid
jj FFFTF =  in every GMRES iteration so that it can be used repeatedly. Also, only 

one IFFT is needed for every grid velocity calculation if the following scheme is used: 
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A total of only 6 FFTs (3FFTs in the first equation and 3 IFFTs in the second) are needed in 

each matrix-vector product calculation [49]. This is a dramatic computational cost reduction 

compared with 18 FFTs. This method is shown schematically in Figure 4.1. 
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Figure 4.1: An efficient sequence of FFTs and IFFTs 
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Chapter 5  
 
A curved panel integration algorithm 
 
 

In some cases, discretizing curved surfaces using flat panels might cause dramatic 

discretization error. If curved panels are used, an accurate curved panel integration algorithm 

is needed to avoid erasing the accuracy gains of using curved panels in the discretization. This 

chapter presents a new approach to computing 
r
1  singularities over curved panels. By using 

carefully chosen mapping techniques, a curved panel with curved edges is mapped to a flat 

panel with straight edges. Analytical formulas for flat-panel integrals are then applied to give 

approximate curved-panel integration solutions. For those curved panels with reasonable 

curvatures and smooth edges, this method can efficiently achieve excellent accuracy (10-5% 

error). A simple sphere example is given at the end of this chapter to show the advantage of 

using curved panels. 

 

5.1 A mapping method  
 

In this chapter, we consider the example of computing ds
r∫∫
1  over a curved triangular panel 

using a mapping technique, though other functions can be integrated in a similar way.  

 

Since most geometrically well-defined curved panels with reasonably large curvatures can be 

accurately mapped to flat panels with straight edges, it is possible to introduce a reference flat 

panel and integrate a slightly different function over the flat panel. The key point here is how 

to construct a mapping that accurately maps the curved panel to a straight-edged flat panel. 

Because the 
r
1  integrand is a weakly singular function, approximations that are not accurate 

around the evaluation point may lead to large numerical errors, especially when the 
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evaluation point is on or close to the panel. A successful approximation should be accurate 

enough near the singularity; therefore, singular functions are ideal candidates for 

approximating other singular functions. We might be able to use the flat-panel solutions 

calculated using the analytical method described in Chapter 3 to calculate an approximate 

curved-panel integration solution. 

 

Given a curved triangular panel, a straightforward choice of reference flat panel is the flat 

panel defined by the three corners, though it may not be a good choice. The integration over a 

curved panel may be approximately expressed as: 
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where curveeval−r  is the distance from the evaluation point to a point on the curved panel, flateval−r  

is the distance form the evaluation point to the corresponding point on the flat panel, J is the 

Jacobian matrix, ),( ηξP  is a polynomial approximation of J
r
r

curveeval

flateval

−

− , and  flat
flat flateval

),( ds
r
P

∫
−

ηξ  is 

known to be solvable using the analytical method described in Chapter 3. If 
flateval

1

−r
 is the 

only singular function and J
r
r

curveeval

flateval

−

−  is smooth near the singularity, it will be easy to find a 

polynomial ),( ηξP  that accurately approximates J
r
r

curveeval

flateval

−

− . Therefore the ultimate goal is to 

find a reference flat panel that makes J
r
r

curveeval

flateval

−

−  as smooth as possible.  

 

Figure 5.1 shows a curved panel and two reference flat panels. A tangent panel that touches 

the curved panel at a point closest to the evaluation point on the panel is an ideal choice. In 

the singular case, the evaluation point that is on the surface is also the tangent point. In the 
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near-singular case, the tangent point is chosen as shown in Figure 5.2; it is the point on the 

surface closest to the evaluation point. 

 

 

 

 

Figure 5.1: The tangent panel 

 

 

 

Figure 5.2: Evaluation points and tangent 
points

 

When the curved panel is mapped to the reference flat panel, the following limit exists when 

the point on the curved panel approaches the tangent point (the corresponding point on the 

reference flat panel moves together with it), 

 

  1lim
curveeval

flateval
point tangent point

=
−

−

→ r
r       (5.2) 

 

Note that the determinant of the Jacobian of the mapping J  is usually a smooth function, so 

the ideal mapping we are looking for is a mapping between the curved panel and a tangent 

panel that coincides at the tangent point. This tangent panel is called the “ideal reference flat 

panel” in this chapter. 

 

5.2 Polynomial approximation  
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A second problem is how to calculate the polynomial ),( ηξP . We suggest using the reference 

panel to set up the local coordinate system. The mapping between the curved panel and the 

reference flat panel is defined as  

 

),( ηξxx = , ),( ηξyy = , and ),( ηξzz =      (5.3) 

 

and the determinant of the Jacobian is 
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zxxzyzzyxyyxJ                (5.4) 

 

In the global system, the evaluation point is ( )',',' ZYX  and the point on the curved panel is 

( ) ( ) ( )( )ηξηξηξ , ,, ,, zyx . In the local system, the evaluation point is ( )ZYX ,,  and the point on 

the flat panel is ( )0 , ,ηξ . For the ith point on the curved panel, 
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curveeval

flateval

,',','
,

ηξηξηξ

ηξ
ηξ

−+−+−

+−+−
==

−

−          (5.5)   

 

),( ηξP  can be analytically expanded and truncated to finite terms if the curved surface has an 

analytical expression. Here we suggest using a cubature method. This method first finds 

cubature points ),( ii ηξ  on the reference panel and its corresponding J
r
r

curveeval

flateval

−

− , then it 

calculates the coefficients of the polynomial by forcing the value of the polynomial to match 

J
r
r

curveeval

flateval

−

−  at those cubature points. If more cubature points are used, a least square method 

can be applied to compute the coefficients of the polynomial.  

 

More precisely, assume 
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( ) nm
kcccccP ηξξηηξηξ KK4321, +++= ,          (5.6) 

 

and then calculate the polynomial coefficients by solving 
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Sometimes it is difficult to find the tangent panel analytically; a short iteration may be used in 

such cases. Mapping is the critical step of this curved-panel integration algorithm, so the 

curved surface must be uniquely mapped to the flat surface. Easily made mistakes are surface 

overlaps (parts of the curved surface can be mapped to two or more flat panels) and holes 

(parts of the curved surface cannot be mapped to any flat panels). 

 

5.3 Curved-panel integration algorithm 
 

The curved-panel integration algorithm for computing ds
r∫∫
1  over a curved panel can be 

summarized as four major steps: 

 

1.0) Calculate tangent point and tangent flat panel. 

2.0) Find a mapping between curved panel and ideal reference flat panel. 

3.0) Compute cubature points. 

4.0) Perform curved-panel integration: 

4.1) Compute ds
r

ds
r

ds
r

ds
r

nm

∫∫∫∫∫∫∫∫
flatflatflatflat

,  ,  ,1 ηξηξ
L  analytically    

4.2) Calculate polynomial expansion ( ) nm
kcccccP ηξξηηξηξ KK4321, +++= , for  
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This method is very accurate if the value of J
r
r

curveeval

flateval

−

−  is smooth enough.  

 

5.4 Accuracy testing and mapping improvements 
 

A simple curved triangle panel that is part of a sphere is used to test the accuracy of 

integrating ∫∫
curve

1 ds
r

using this mapping method. The radius of the panel varies from 2~7.5, and 

the distances between corners are 1, 1, and 2 . Note that the larger the radius, the “flatter” 

the panel. First, the singular case (the evaluation point is the centroid of the curved panel) and 

the nearby case (the evaluation point is the centroid of a nearby panel) are tested. Figures 5.3 

and 5.4 show that very good accuracy is achieved using this algorithm, even with a low-order 

polynomial approximation.  

 

Second, the near-singular performance of the mapping method is tested. Evaluation points are 

chosen along the line that connects the center of the sphere and the circumcenter of the flat 

panel defined by the three corners. Figure 5.5 shows that the accuracy decreases and then 

increases. This is caused by the mapping error. Figure 5.6 shows 1
curveeval

flateval =
−

−

r
r  at the near-

singular point, and it is close to 1 all over the panel. But a scaling reveals a peak that cannot 

be easily fitted with a polynomial. Of course, the accuracy of the mapping method will not be 



 
 
 

67

bad, since 
curveeval

flateval

−

−

r
r ~1 all over the panel, but it will not be very good unless a large number of 

cubature points and a high-order polynomial are used. In the singular case, 
curveeval

flateval

−

−

r
r  strictly 

increases or decreases when a point on the panel moves farther away from the singularity. 

When the evaluation point is far away from the panel, 
curveeval

flateval

−

−

r
r  is also smooth enough to be 

accurately fitted to a polynomial. The difficulty only occurs when the evaluation point is 

neither far from the panel nor very close to the panel. Figure 5.5 shows that using a large 

number of cubature points and a high-order polynomial can achieve good accuracy but at high 

cost. 

 

 

 

Figure 5.3: Singular case accuracy 

 

Figure 5.4: Nearby case accuracy
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Figure 5.5: Near-singular accuracy 

 

Figure 5.6: Value of 
curveeval

flateval

−

−

r
r  

 

The hat-shape of  
curveeval

flateval

−

−

r
r  at the near-singular area reflects a problem in the mapping. 

Therefore, modifying the mapping may improve the accuracy. The method used here is 

keeping the tangent point fixed, while scaling (enlarging or shrinking) the reference flat 

panel. Figure 5.7 shows curveevalflateval −− ≠ rr  in the old mapping. A very short iteration procedure 

is used to perform the scaling: each time, the panel is enlarged so that the smallest 
curveeval

flateval

−

−

r
r  at 

those cubature points increases to 1 (see Figure 5.8). Figure 5.9 shows that the modified 

mapping gets rid of the hat-shape shown in Figure 5.6. Figure 5.10 shows that the 

modification significantly increases accuracy.   

 

 

Figure 5.7: Old mapping 

 

Figure 5.8: Modified mapping 
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Figure 5.9: Hat-shape disappears 

 

Figure 5.10: No-hat increases accuracy 

 

 

5.5 Discretization error reductions of using curved 
panels 
 

To demonstrate the advantage of using curved panels, consider computing the capacitance of 

a sphere when the charge distribution is uniform.  Table 5.1 compares the capacitance 

computed using a flat-panel geometric approximation with that using curved panels and our 

new integration method. As is clear from the table, the curved panels yield fifty times the 

accuracy with a tenth of the panels.  

  

Table 5.1: A simple example: capacitance of a sphere 

Panels used Error 

48 Curved Panel 0.0127% 

48 Flat Panel 8.659% 

768 Flat Panel 0.679% 
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Chapter 6 
 
Null space of the incompressible Stokes 
integral equation 
 

 

The Stokes equation only has a pressure derivative term, which implies that a constant 

pressure can be added to the solution. Therefore, the equation does not have a unique solution 

without a proper pressure boundary condition. The corresponding singular mode of this 

equation is the constant-pressure zero-velocity solution, which does not affect the total force 

on a single rigid body. However, the singularity can impact the results produced by a 

numerical procedure, especially in multi-body problem simulations [44]. In addition, the 

detailed fluid forces will not be computed correctly unless the singular mode is treated 

properly.  

 

We start this chapter by introducing the null space problem of a single rigid body, followed 

by detailed discussions. A two-step method is presented in later sections: the first step solves 

the null-space-free solution, and the second step recovers the correct solution from the null-

space-free solution by adjusting the magnitudes of the null-space components. With this 

approach, the final solution is unique and correct.  

 

6.1 Null space of a single rigid body 
 

For a single rigid body, constant pressure around it generates zero total force, and therefore, 

no induced velocity. The forces produced by constant pressure are only nonzero in the normal 

direction, that is,  

 

nPf rr
−=                  (6.1) 
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where nr  is the surface out normal. Substituting (6.1) into the single-layer integral equation 

(4.10) and integrating over the surface yields:   

 

∫ =
surface

0dsnG jij                                                                (6.2) 

 

If the single-layer integral in (4.10) is viewed as an operator applied to the surface force, the 

surface normal is the singular mode of this integral operator. At the discretized level, the 

integral operator is the G matrix and GN=0  exists for every closed surface, where N  is the 

surface normal vector. Obviously, N is the null-space vector of the G  matrix. If a direct 

matrix inverse is applied to calculate the surface force vector F  from GFU = , numerical 

error is unavoidable since G  is a singular matrix. The following is the solution of F using a 

direct matrix inverse 

 

ε+Χ+= NFF solutioncorrect         (6.3) 

 

where X  represents a large number generated by the numerical procedure, and ε  is the 

numerical error. As can be imagined: if X  is too big, noise ε  may be big enough to 

obliterate the correct solution solutioncorrect   F , and then recovering an accurate solution 
solutioncorrect   F  from ε+Χ+= NFF solutioncorrect    would be impossible.  

 

For now, we simply assume that there is an accurate numerical approach that generates a 

noise-free solution YNFF += ⊥ . We change the notation here because the null space is 

physically a piece of missing information which is not given by the velocity integral equation, 

so one should not expect to have an  solutioncorrect   F  by solving the velocity integral equation. A 

possible solution is ⊥F , which assumes the magnitude of the null-space component to be 

zero. In other words, ⊥F  is perpendicular to the null space. 
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6.2 Multi-body Problem 
 

The missing pressure boundary condition is only one problem we need to face, and the 

solution is adding a proper boundary condition to the integral equations. Therefore, we need 

the pressure integral equation that has been largely forgotten by many researchers. In 

addition, since two integral equations are derived from the Stokes partial differential equation, 

a correct solution needs to satisfy not only both integral equations, but also the constraints 

that describe the relationships between the variables, such as )()()( xnxPxf rrrrr
−=  on the 

surface of a rigid body. Such a relationship is the key to success, because the velocity integral 

equation and the pressure integral equation are relatively decoupled, and also because both 

the velocity integral operator and the pressure integral operator are singular.  

 

Fortunately, we know the null spaces of the integral operators and we know that the solution 

is in a format ∑
=

⊥ +=
objects ofnumber 

1i
ii NYFF  if the numerical noise is well under control, where iN  is 

the null-space vector of the ith rigid body. Calculating the null-space-free solution ⊥F  can be 

a starting point of our solution scheme. For now, we need to further explore some key points 

of this topic to provide a clearer picture.  

 

6.2.1 The null space of the pressure integral operator 
 
 

Surprisingly, the pressure integral operator is also a singular operator with the same null 

space, which is the surface normal. The definition of surface force for incompressible flow is  

 

 
( )[ ]TuuPI

nf
vv ∇+∇+−=

=

××

×××

µσ

σ

3333

133313      (6.4) 
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where 13×f  is the surface force vector with three components in zyx  and ,, directions 

respectively, and 33×σ  is the stress tensor of the fluid. Equation (6.4) implies that  nPf rr
−=  if 

0 =ur . Note f
r

 does not appear explicitly in the Stokes equation, but it is a variable of the 

Stokes integral equations.  

 

Suppose the entire domain bounded at infinity is filled with fluid, with an imaginary closed 

boundary defined by the surface of a rigid body (see Figure 6.1). The single-layer velocity 

and pressure integral equation represent velocity and pressure due to point force distribution 

on the boundary. Suppose we put normal direction point force distribution with value P−  on 

the boundary, that is nPf rr
−= . As can be imagined and calculated from the velocity integral 

equation: the velocity is zero everywhere. The point forces put on the boundary only act on 

the inside fluid, which is incompressible, so the total effect of the point force distribution is 

zero velocity everywhere, with a constant pressure P  inside the boundary and a zero pressure 

outside the boundary. The pressure jump across the boundary is P− . This layer jump is 

almost the same as the jump in the double-layer velocity integral; both kernels are strongly 

singular kernels. Mathematically, we can imagine that every point force is evenly split into 

two halves with the boundary right in the middle; so the pressure right on the boundary is 
2
P . 

Apply the pressure integral equation: 

 








=−→

−=−=

∫

∫∫

D inside
Don right 
D outside

1
5.0

0

8
1       

        
8
1

8
1

dsnp

dsPnpdsfpP

ii

iiii

π

ππ
    (6.5) 

 

The double-layer jump makes the pressure non-continuous across the surface. As mentioned 

before, a well-accepted approach is to neglect the undesired side and keep the value on the 

boundary continuous with the other side. This is also physically meaningful because the right 

boundary is not “right on” the boundary but rather infinitely close to the boundary from the 
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fluid side. Therefore, the value of the double layer jump is zero because the fluid is outside 

the boundary defined by the surfaces of the rigid bodies. To avoid making the final equations 

too complicated, we handle the layer jump numerically by modifying the kernel integration 

algorithm slightly. By doing so, we will not have to discuss the double-layer jump topic 

again, since it is numerically incorporated in the kernel integration algorithm. Equation (6.5) 

can be proven both numerically and analytically.  

 

 

Figure 6.1: Fluid domain with a boundary D defined by the surface of a rigid body 

 

After taking the double-layer jump into consideration, we conclude that the pressure integral 

operator is also a singular operator, and the null-space vector is also the surface normal.  

 

6.2.2 The relationship between the velocity and pressure integral 
operators 
 

The velocity and pressure integral operators are both singular with the same null space, and 

they both operate on the surface force distribution. A common approach to calculate the 

surface force is to use the velocity integral equation first, since both velocity and force have 

three components. The pressure integral equation is then applied to calculate the pressure, 

which can be used to modify the force solution.  
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Suppose we use the velocity integral equation to calculate a force solution. Because of the 

uncertainty of the null-space component, there are infinite solutions once a proper velocity 

boundary condition is given (the velocity boundary condition has to satisfy the continuity 

equation). If those force solutions are substituted into the pressure equation to calculate the 

pressure, the pressure solution will be correct and unique. This can be proved as follows. 

 

There is a correct force solution, and this force solution will generate a 

unique and correct pressure solution, as can be proved by the definition of the 

pressure fundamental solution and linear superposition. The only difference 

between the correct force solution and the wrong solutions that satisfies the 

velocity integral equation is the null-space component, which is also the null-

space component of the pressure integral operators. Since this null-space 

component will not affect the pressure solution of the pressure integral 

equation, any force solution that satisfies the velocity integral equation will 

give a unique pressure solution, which is the correct one.  

 

6.2.3 The pressure boundary condition 
 

As mentioned before, we need to add a pressure boundary condition to the integral equation. 

This is the only way to select a correct solution for the incompressible Stokes boundary value 

problem. We know from the discussion in the previous section that the pressure variation is 

uniquely determined once the velocity field is given. Because the fundamental pressure 

solution due to a point force has a 2−r  type singularity, the pressure variation decreases to 

zero at infinity at a speed of 2−r . Thus, the pressure boundary condition must be an 

adjustment to this unique pressure variation that is zero at infinity. Either the pressure at a 

point or the pressure at infinity is a sufficient pressure boundary condition. The correct 

pressure integral equation with a given ambient pressure ∞P  is  

 

∫ ∞+−= PdsfpP iiπ8
1      (6.6) 
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If the given pressure boundary condition is not the ambient pressure ∞P , but rather 

pointcertain  aat P , then the above equation may be applied to calculate the pressure at infinity 

)pointcertain  aat (8
1







 += ∫∞ dsfpPP iiπ

.  

 

6.2.4 The relationship between the correct force solution solutioncorrect  F  
and the null-space-free force solution ⊥F  
 

Now the picture is almost clear, but we have not given the relationship between the correct 

solution solutioncorrect  F  and the null-space-free force solution ⊥F . It is easy to prove that the 

null-space-free force solution ⊥F  is not the correct force solution solutioncorrect  F  using the 

example shown in Figure 6.2. 

 

 

Figure 6.2: The correct force solution and the null-space-free force solution 

 

In this example it is assumed that two long parallel plates are slowly approaching each other 

so that a high pressure region is generated in the middle; the pressure elsewhere is negligibly 

small. For the sake of simplicity, we assume the pressure is uniform in the middle. There is 

also a sphere right in the center. The correct surface force solution is plotted in the left picture 

in Figure 6.2. It is easily seen that the correct solution is not a null-space-free solution. To 

make it more dramatic, we subtract the null-space components (in the middle picture) to 
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reveal the null-space-free solution (in the right picture). The null-space-free solution not only 

gives the wrong force distributions on the two plates but also indicates zero force on the 

sphere, and this is clearly non-physical. This example also shows that a null-space-free 

solution, although it bears significant force discontinuities across the surfaces, may be 

modified to recover the correct solution. That is, 

 

ii

m

i

NCFF ∑
=

⊥ +=
1

solutioncorrect     (6.7) 

 

where m is the number of objects in the system and iN  is the corresponding null-space vector. 

The factors iC  may not have the same values. In the above example, the corresponding 

plateright sphereplateleft   and , , CCC  are 
2

and , ,
2

ppp ∆
−∆−

∆
−  respectively if the surface outward 

normals are used as null-space vectors.  

 

Therefore, the factors iC  can be used to adjust the normal components of the force vector to 

make nPf rr
−=  at the surfaces of the rigid objects. After this adjustment step, the solution 

should be correct and unique.  

 

In a single-object system, the force solution is always continuous since there is only one 

closed surface. The null-space-free solution is not correct, but it is still sound although it may 

indicate a wrong pressure at infinity, which violates the pressure boundary condition. The 

difference between the null-space-free solution and the correct solution is only CN . 

 

In a multi-object system, the null-space-free force solution is not necessarily continuous; the 

m-independent null-space vectors correspond individually to the surface normal on one object 

and zero on the others. As can be seen from Figure 6.2, the forces on the sphere are zero, 

while those on the inner side of the plate are not. These jumps across surfaces are clearly 

undesired, and may lead to confusion. This must be avoided by doing a pressure adjustment.     
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6.2.5 Strategy and a short summary 
 

The missing pressure boundary condition, the null space of the singular integral operators, 

and the surface force that serves as a bridge between the two integral equations make it 

difficult to compute the correct and unique surface force solution. As a brief summary, the 

following strategy is presented to handle the singular Stokes BEM operator problem: 

 

a. Apply a numerically robust algorithm to calculate the accurate null-space-

free surface force solution. This solution is a finite solution. 

b. For each object, apply the pressure integral equation to calculate the 

pressure at one point on the surface. Then use this pressure solution to 

adjust the null-space-free solution by adding or subtracting the null-space 

component so that    Pfn −= . 

 

Note that the null space of the singular integral operator is the surface normal only, which 

does not affect the total force on the object. Hence, the first step is good enough if only the 

net body forces, and not the detailed surface force, are all that are of interest. The null-space 

components can simply be eliminated in the computation procedure of the first step. 

Otherwise, it is necessary to perform the second step. 

 

6.3 The modified GMRES algorithm 
 

If the numerical aspect is not treated carefully, solving the singular matrix problem GFU =  

may cause large numerical errors. The solution may be badly contaminated by the null-space 

components and numerical noise. A numerically robust procedure is crucial to the success of 

the two-step strategy presented in the previous subsection. 

 

If a Krylov-subspace-based method, such as GMRES, is applied to solve U GF= , then 

removing the null space of the G  matrix can be performed by removing the null space from 
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every Krylov subspace vector since the GMRES algorithm searches the solution iteratively in 

the Krylov subspace.  

 

]......,,,,[     Subspace  Krylov 132 UGUGUGGUUK n
n

−=     (6.8) 

  

An easy approach is to perform the null space removing procedure after every matrix-vector 

product step of GMRES. This guarantees that the null-space vectors will not contaminate the 

orthogonal vectors generated by the modified Gram-Schmidt orthogonalization step.  

 

But why is the Krylov subspace not perpendicular to the null space? Applying the divergence 

theorem to the continuity equation, we have  

 

00 =⇒=•=•∇∫∫∫ ∫∫ UNdsnudvu rrr
    (6.9) 

 

Therefore, the first Krylov subspace vector is perpendicular to the null-space vector.  U GF=  

also indicates that every vector in the range of the G  matrix is a valid velocity distribution; 

hence, the product of the G  matrix with a vector is also perpendicular to the null-space 

vector. This leads us to conclude that the Krylov subspace  ......],,,[ 32 UGUGGUU=κ  is 

automatically perpendicular to the null-space vectors. However, this is not true. A 

numerically calculated G matrix bears non-negligible numerical errors from the numerical 

procedures such as the kernel integration algorithm. The matrix vector product used in the 

GMRES algorithm is only approximately calculated using the PFFT algorithm, which also 

introduces numerical errors. So, the Krylov subspace is not perfectly perpendicular to the null 

space of the G  matrix. 

 

The null space removing procedure is a simple procedure that removes the null-space vector 

iN  from every Krylov subspace vector (the matrix-vector product) jk . It is computationally 

cheap and easy to implement.  
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i
i
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i

i
T

j
jj N

NN

Nk
kk −=       (6.10) 

 

In many cases, the numerical errors contaminate the orthogonal vector space generated by the 

modified Gram-Schmidt orthogonalization step and cause slow convergence. Thus, this null-

space removal modification is necessary. It not only leads to a perfect null-space-free 

solution, but also makes the GMRES algorithm converge faster.  In Figure 6.3, the red line 

labeled “Without Nullspace Remover” represents the norm of the residual of the GMRES 

iteration when the Null-Space Remover was turned off. The blue line labeled “With Nullspace 

Remover” represents the norm of residual when the Null-Space Remover was on; it 

converged much faster after about 30 iterations. Thus, having a null-space remover that is 

easy to implement is a good choice.  

 

 

Figure 6.3: GMRES converges faster with the null-space remover. 

 

 

6.4 The “Regularization” Method 
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Other than modifying the GMRES algorithm, modifying the G  matrix can also prevent 

inverting a singular matrix. Once we know the null space of the G  matrix, it is not difficult to 

reconstruct another nonsingular matrix 'G  so that the null-space-free solution is the unique 

solution. This is the “regularization” method. In this method, m rank-one-matrices are used to 

reconstruct the singular G  matrix of an m-object problem.    

 

∑
=

+=
m

i

T
iii NNcGG

1
'                  (6.11) 

 

Where T
iii NNc  is a rank-one-matrix, ic  is the coefficient. Then, 0' ≠iNG  and 'G  is no 

longer singular. UFG ='  has a unique solution ⊥F : 

 

UGFFNNcGFFG
m

i

T
iii =+=+= ∑

=

⊥⊥⊥⊥

1

0'               (6.12) 

 

It is clear from the above equation that the null-space-free solution is also the solution of the 

“regularization” method, it can be solved directly from the equation UFG =' .  

 

The “regularization” method is also a good method, but we have chosen to use the modified 

GMRES algorithm in FastStokes. This is not only because the fast convergence of the 

modified GMRES algorithm is attractive, but also because the uncertainty of ic  in the 

“regularization” method raises suspicions that improper ic  might cause problems. Large ic  

might overwhelm G  and smaller ic  does not help very much. A well-conditioned 'G  

depends on good methods to pick the ic , while this problem does not exist if the modified 

GMRES method is used. One idea for picking the ic  is to make the nonzero elements of the 

rank-one matrix comparable to the diagonal elements of the G  matrix. 

 

6.5 Pressure Pinning Method 
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The null-space-free solution is obviously non-physical and confusing, as indicated by Figure 

6.2. If detailed surface forces are desired, the null-space component must be properly added 

and the pressure must be taken into account. This is the second step, which we call the 

pressure pinning method.  

 

As mentioned before, a pressure boundary condition is necessary to compute a unique 

solution, either a ∞P  or a pointcertain   aat P is needed. Assuming ∞P  is given, the pressure integral 

equation (6.6) may be applied to calculate pressure in the entire fluid domain. The pressure 

solution, as proved in the previous sections, is correct and unique. Since the only uncertainty 

between the null-space-free force solution and the correct one is the magnitude of the null-

space vector, we can calculate the pressure on the surface and apply the relationship Pfn −=  

to figure out this magnitude. Only the pressure at one point needs to be calculated because 

there is only one variable iC  for each closed surface.  

 

ii

m

i
NCFF ∑

=

⊥ +=
1

solutionright      (6.13) 

 

iN  in the above equation is the discretized form of the surface outward normal. Equation 

(6.6) is applied to calculate the pressure at this point on the surface. Note that the relationship 

Pfn −=  is true on the surface of the rigid body, so let 

 

( )
ini FPC

object on point certain   aat 
⊥−−=      (6.14) 

  

and substitute it into (6.13) to calculate the final solution that satisfies both the Stokes 

equations and the pressure boundary condition for an m-object system.  
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Theoretically, iC  should be the same at any point on one closed surface, but discretization 

error and other numerical error may affect the accuracy of  iC . A straightforward conclusion 

is that the numerical solutions of iC  at points far from corners and edges are more accurate. 

 

6.6 Numerical Results  
 
 
Results from applying the two-step method to a two-plate problem are shown in Figures 6.4 

and 6.5.  In the two-plate example, the top plate is moving up at a velocity 1=zV  while the 

bottom plate is fixed. The sizes of the two plates are mmm µµµ 15100100 ×× . Figure 6.4 

shows the result of ignoring the singularity: the solution is badly contaminated by the null-

space vectors. Figure 6.5 shows the result of using the modified GMRES and the pressure 

pinning method described above. Although it is not obvious from the figures, both methods 

give the correct total forces, but it is quite clear that only the second one gives the correct 

surface force distribution.  

 

Figure 6.4: A wrong solution without 
considering the singular BEM operators 

 

Figure 6.5: The correct solution of the two 
parallel plate example
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Chapter 7 
 
Numerical simulation examples using the 
steady incompressible FastStokes solver 
 

The previous chapters have covered the major theoretical aspects of the incompressible 

FastStokes simulation program. We give four simulation examples in this chapter to show the 

effectiveness of the steady incompressible FastStokes solver. A sphere, a resonator, a micro-

mirror, and ADXL76 accelerometer are simulated. The simulation results of real devices are 

further compared with testing results to show the accuracy of the steady incompressible 

FastStokes solver.  

 

7.1 A translating sphere 
  

For a simple spherical geometry, an analytical solution of the Stokes equation exists. Given 

the radius of the sphere 0R and constant velocity U
r

, the drag force on the sphere is given by: 

 

URF
rr

06πµ=                                                              (7.1) 

 

In this computational experiment, it is assumed that 1 ,1 ,1 0 === zURµ , and FastStokes is 

used to calculate the z-direction drag forces numerically. Figure 7.1 shows the surface force 

distribution. The red stars in Figure 7.2 are the relative errors that decrease linearly with 

respect to the number of panels in a log-log plot. The blue circles are the errors of the total 

surface area due to the flat panel discretization. Note that the blue line is parallel, and very 

close, to the red line.  This is because the error mainly comes from the geometrical error of 

using a flat panel discretization, and this geometrical error is reflected in the error of total 

surface area. The CPU times of using the ))log(( nnO  FastStokes solver and the traditional 
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)( 3nO  Gaussian elimination method (LU decomposition) are compared in Figure 7.3. If 5,000 

panels are used, FastStokes is about 3,000 times faster than Gaussian elimination. The 

memory usage of Gaussian elimination is )( 2nO  while that of FastStokes is much less (about 

)(~)( 5.1nOnO ); the comparisons are shown in Figure 7.4. A 500-Mhz dual-processor 

computer running the Alpha-Linux system is used in these simulations.  

 

 

 

Figure 7.1: A translating sphere 

 

 

Figure 7.2: Relative error of the sphere vs. 
the number of panels 

 

 

Figure 7.3: CPU times of FastStokes and 
Gaussian elimination 

 
Figure 7.4: Memory usages of FastStokes 

and Gaussian elimination 
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7.2 Comb-drive resonator 
 

A lateral comb-drive resonator is shown in Figure 7.5. The test structure was fabricated using 

the MUMPS process at MCNC (now Cronos Integrated Microsystems Inc., Research Triangle 

Park, North Carolina). Some important dimensions are given in Table 7.1. The movable 

comb-drive was set into motion in air at atmospheric pressure using an electrical stimulus to 

one static comb-drive. The magnitude and phase of the resulting motions were measured 

using the Computer Micro Vision technology [50]. The measured resonant frequency of the 

lateral motion is 19.2 kHz and the quality factor is 27. 

 

Table 7.1: Resonator dimensions 

 Dimensions ( mµ  ) 

Finger gap 2.88 

Finger length 39.96 

Finger overlap 19.44 

Tether length 151 

Tether width 1.1 

Thickness 1.96 

Substrate gap 2 

 

A discretization using 16,544 panels is shown in Figure 7.5. The air viscosity used in the 

calculation is smkg ⋅×= − /10843.1 5µ  [17]. FastStokes was used to simulate the device, and 

the lateral direction surface force solution is shown in Figure 7.6. Using the rigid-body 

assumption and a second-order spring-mass-damper system as a macro-model, we calculate 

the damping coefficient b  from the simulation result and then further calculate the quality 

factor Q:  
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b
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eff
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               (7.2) 

 

The effectiveness mass kgmmm tmeff
111014.5

35
12 −×=+=  is calculated using Rayleigh’s 

method [35], where mm  and tm  are the masses of the movable comb-drive and the tethers 

individually calculated from geometry. Stiffness k  can be calculated from the measured 

resonance frequency and the effective mass using ( ) mNmfk eff /748.02 2
0 == π . The 

simulation result is compared with the experimental result in Table 7.2. The steady 

incompressible FastStokes solver gives a numerical solution that is very close to the 

experimental results, while simple approaches such as using the Couette flow model or 1-D 

Stokes flow model fail. A major reason is that those simple fluid models cannot model 3-D 

effects, which are important in this resonator case. This is reflected by the inaccurate inter-

finger and end forces.  

 

The solution convergence with respect to different discretizations is shown in Figure 7.7; the 

solution is accurate even if a coarse mesh with 4,868 quadrilateral panels is used. The CPU 

time is shown in Figure 7.8; a very fine discretization with 59,280 panels takes a little more 

than an hour’s time.  
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Table 7.2: Comb-drive resonator simulation and measurement results 

 Drag forces (nN)  /  (Ux=1 m/s) 

 Total Bottom Top Inter-

finger 

End and 

others 

Q 

Couette Flow 123.7 108.9  14.8  50.1 

1-D Stokes 137.1 108.9 13.5 14.8  45.2 

FastStokes 223.7 123.0 
(55%) 

26.8 
(12%) 

73.8 
(33.0%) 

27.7 

Experiment  27 

 

 

 

 

Figure 7.5: SEM of a lateral resonator 

 

Figure 7.6: Detailed drag force on a lateral 
resonator using the incompressible Stokes 

model 
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Figure 7.7: Convergence of the drag 
forces of the comb-drive resonator 

simulation 

 

 

Figure 7.8: CPU times of the comb-drive 
resonator simulation 

 

7.3 Micro-mirror 
 

An electrostatically actuated micro-mirror was simulated using FastStokes [46]. The micro-

mirror was fabricated and tested in the Micromachined Product Division of Analog Devices 

Inc. (Cambridge, MA). The air-packaged micro-mirror is the critical part of an optical switch, 

and its dynamic performance is strongly affected by the viscous drag forces. Testing data 

have shown that the mirror is heavily damped, with a quality factor around 2 for certain 

designs. Two major modes, the “mirror only” rotation mode and “mirror + gimbal” rotation 

mode, are simulated here. Table 7.3 compares the simulation results and experimental results 

of two different designs: 
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Table 7.3: Quality factors of the micro-mirror simulations and measurements 

  Measured Q Simulated Q Error (%) 

Mirror+gimbal 2.31 2.36 2.16 Mirror 1 

Mirror 3.45 3.14 8.99 

Mirror+gimbal 4.27 4.69 9.84 Mirror 2 

Mirror 10.63 10.16 4.42 

 

 

The simulated and measured quality factors match within 10%. Again, the small differences 

prove the accuracy of the FastStokes program. Figure 7.9 shows the Z-direction surface force 

on the mirror when both mirror and gimbal rotate. Only half of the mirror is plotted in Figure 

7.9 in order to give a clear view of the force distribution. When the mirror rotates 

counterclockwise, as we expected, the viscous drag force on the mirror surface is against this 

motion. Figure 7.10 shows that the simulation solution quickly converges as the discretization 

is refined. Figure 7.11 shows the CPU time. The simulation was finished in less than an hour 

when 42,340 panels were used.  

 

 

 

 

Figure 7.9: Z-direction force on a micro-
mirror 

 

Figure 7.10: Convergence of the micro-
mirror simulation
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Figure 7.11: CPU times of the micro-
mirror simulation 

 

 

 

 

 

 

 

 

 

 

 

 

7.4 ADXL76 
 
 
A picture of the ADXL76 accelerometer is shown in Figure 7.12. The device is fabricated by the 

Micromachined Product Division of Analog Devices using the iMEMS process. Some basic 

dimensions are listed in the following table.  

 

Table 7.4: Key dimensions of ADXL 76 

Finger overlap 104 mµ  

Air gap between fingers 1.3 mµ  

Air gap between substrate 1.6 mµ  

Number of cells 28 

 

It is very clear that the aspect ratio of air gaps between the comb fingers is large enough to 

generate strong viscous damping forces. This is indeed the dominant source of viscous damping 

forces in ADXL76. The substrate is also very close to the finger and proof mass, hence the shear 
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damping forces between the substrate and beam (movable comb) should not be neglected. In such 

cases, a simple model based on a semi-analytical approach will not yield very accurate results. 

However, full 3-D simulation of the entire device is very difficult even for a fast solver like 

FastStokes. Those very close fingers cannot be accurately simulated without using a very fine 

discretization, and this generates large numbers of unknowns. To solve this problem efficiently 

and to figure out a good method for modeling even more complicated accelerometers, cells 

instead of the whole devices are simulated (see Figure 7.13). Simulation results show that the 

damping forces increase linearly with the number of cells (Figure 7.14). An extrapolation yields a 

quality factor of 6.46, which is very close to the tested quality factor of the devices (about 6.0). 

 

Using the FastStokes solver, we also simulated the Q-factor drifts of ADXL76 due to geometry 

variations such as beam curvatures and positional offsets. Testing a single device or a batch of 

wafers does not yield many useful results, since curvatures and offsets are usually coupled, and 

they vary from device to device. But the simulation results clearly indicate the percentage of 

damping changes due to geometry variations. Therefore, a fast full 3-D simulation program, such 

as FastStokes, plays a very important role in studying the damping effect of ADXL76. 

 

 

 
 

Figure 7.12: ADXL76 accelerometer 

 

 
 
 

Figure 7.13:  4 cells used in ADXL76 
simulation 
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Figure 7.14: Drag forces on cells and 

linear data fitting 
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Chapter 8 
 
 

Compressible Stokes Flow 
 

 

In the past twenty years, MEMS has been one of the most exciting fields. Many novel design 

ideas have revealed the great potential of the micro-scale devices, and this has attracted ever-

increasing attention to exploring new phenomena. Squeeze film damping has been studied for 

decades in the lubrication industry. The discovery of strong squeeze film damping in 

micromachined devices has renewed the interest in further study of the low Reynolds number 

flow. Unlike the oil lubrication problems people studied before, the squeeze film effects in 

MEMS are usually related to weak air compression.    

 

Using the thin-film surface-micromachining technologies, it is easy to fabricate complicated 

2-D surface structures. Hence many MEMS devices have a large thin proof mass separated by 

a narrow gap from the substrate. When the device is packaged in air and the out-of-plane 

motion of the proof mass is important, air damping must be taken into consideration. Because 

of the large aspect ratio of the thin air film trapped between the proof mass and the substrate, 

the squeeze film effect may be very strong. In such cases, viscous drag force along the narrow 

passage obstructs the motion of air, and this causes the generation of a high (or low) pressure 

region between the proof mass and the substrate. The damping force is very strong due to the 

viscous force. In addition, there is also a strong spring force because air is compressed (or 

expanded). 

 

Many researchers have studied the squeeze film effect; experimental results show significant 

air compression when the squeeze film effect is strong. This is particularly reflected by the 

large spring forces generated by the air compression. A large damping force usually leads to a 

small quality factor; but a large spring force may change the resonance frequency by orders of 

magnitude. If the device is designed as a resonator or a sensor, the compression effect may 
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change the dynamic performance of the device dramatically. Therefore, compression effect 

must be taken into consideration. 

 

A well-developed method for handling the squeeze film problem is solving the Reynolds 

equation [10]. The Reynolds equation is derived from the compressible Navier-Stokes 

equation, based on special simplifications applicable to the thin fluid film between two close 

surfaces. Those assumptions, though accurate when applied to thin liquid films, are not 

applicable to air in complicated general 3-D geometries.  

 

The linearized compressible Reynolds equation is a simplified version of the nonlinear 

compressible Reynolds equation. It is computationally friendly; there are even analytical 

solutions for simple cases such as thin films between two square or circular plates [4]. The 

linearized compressible Reynolds equation has been applied extensively in studying the air 

squeeze film effect in MEMS devices. Researchers have already achieved exciting simulation 

results that prove the importance of modeling the air compression effect.  

 

Unfortunately, comparisons between experimental results, numerical simulation results using 

FEM, and numerical solutions using the linearized compressible Reynolds equation also show 

the shortcomings of this approach [12, 40]. The Reynolds equation was developed for thin 

fluid films; it is not capable of handling the increasingly complex geometries of the new 

MEMS designs. Some modifications can improve the accuracy of the linearized Reynolds 

equation; they can even model the edge effect that may cause large errors if neglected. But 

such modifications are usually based on simple analytical approaches whose applications are 

also limited. Obviously, it is difficult to extend the Reynolds equation approach to general 

devices, such as the micro mirror discussed in the previous chapter. A computationally 

friendly 3-D fluid model is needed if accurate solutions are desired.   

  

We have successfully developed a 3-D compressible Stokes flow model and a corresponding 

PFFT-accelerated BEM solution scheme [45]. This 3-D fluid model is derived from 3-D 

Navier-Stokes model based on the low pressure variation assumption only; therefore it is 
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applicable to general 3-D geometry. In this chapter we begin by deriving the PDEs of the 

compressible Stokes equation, followed by the derivations of boundary integral equations. 

 

In addition to presenting the new fluid model, we further explore the differences between the 

incompressible Stokes flow model and the compressible Stokes flow model in this chapter. 

Numerical results and further discussion of calibrating fluid compression effects in MEMS 

devices are given in Chapter 9.  

 

8.1 The compressible Stokes equation 
 

Assuming an isothermal condition, the governing equations of the isothermal compressible 

flow are 
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where the first equation is the momentum equation (Navier-Stokes equation), and the second 

equation is the continuity equation. We also add the ideal gas equation to relate pressure P  

with density ρ . Again, µ  is the viscosity, u  is the velocity, T  is the temperature, and 

)/(  287~ KkgJR ⋅  is a constant. The third term on the right-hand side of the momentum 

equation is the so-called second viscosity term, the bulk coefficient of viscosity 0=κ  for 

monatomic gases. As mentioned before, the fluid motions in MEMS devices are usually 

generated by the oscillations of the moving parts. Given a feature size L  and an oscillation 

frequency 
π
ω
2

, the velocity is on the order of ωL . If we introduce non-dimensional variables 
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LxxUuu /',/' rrvv ==   and UPLP µ/'= , the momentum equation can be non-dimensionalized 

and the result is:  
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Because of the small feature size of the MEMS devices, the Reynolds number 

ν
ω

ν

2

~Re LUL
=  is small in a wide frequency range. It is also clearly shown in (8.2) that the 

first term and the second term of the momentum equation are of the same order of magnitude 

if ωLU ~  is true. 

 

The incompressible Stokes equation is derived from the incompressible Navier-Stokes 

equation with the small Reynolds number assumption. By following the same rule, we neglect 

the nonlinear convective term to obtain the compressible Stokes equation. In addition, the 

density in the first and second equations is replaced with 
RT
P

=ρ : 
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We refer to the above equations as the governing equations of the compressible Stokes flow. 

They are capable of modeling the slow motions of compressible fluids such as air or 

lubrication oil with tiny bubbles inside. The first term in the above equation may be 

neglected, but let us keep it for a moment.  

 

Equation (8.3) is a nonlinear equation that is not easy to solve using BEM. What we prefer is 

an easier linear model that allows the fast simulations of geometrically complicated devices. 

Fortunately, an accurate linearization of equation (8.3) is possible.   
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It has been noticed that the pressure variations in the MEMS devices are usually small, 

although the pressure gradients are large. Many MEMS devices are fabricated with thin-film 

surface micromachining technologies; this makes generating large pressure variations almost 

impossible. Even if the device is not very thin, a large pressure variation on the order of 1 atm 

does not happen frequently unless lots of energy is consumed. Therefore, we linearize the 

pressure in those nonlinear terms around the ambient air pressure:  
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where 0P  is the ambient air pressure, and RT
P0

0 =ρ . Equations in (8.4) are the linearized 

compressible Stokes equations. By “Stokes equations” we mean both the momentum equation 

and the continuity equation. If the first term in the momentum equation is also neglected, the 

following equations are named the simplified linearized compressible Stokes equations. 
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The pressure time derivative term in the continuity equation must be kept to allow fluid 

compression, so both (8.4) and (8.5) are capable of modeling weak fluid compression effects 

generated by oscillating motions.  
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Figure 8.1: Two circular parallel plates 

 

The linearization of the velocity time derivative term in the momentum equation will not 

cause much error, since this term itself is negligible. But the effect of linearizing the 

continuity equation is not very straightforwardly understandable without using an example. 

Consider two circular plates with radius R  and an air gap h  in between. The bottom plate is 

fixed and the top plate oscillates up and down with a sinusoidal displacement th ωε sin  (see 

Figure 8.1), where ε  is a constant number much smaller than 0.1. If we temporarily assume 

the air is incompressible and apply the continuity equation for incompressible flow, the 

average amplitude of radial air velocity around the edge of the gap is 
2
RU εω

= . Thus, 

2
RU εω

<  because the fluid is compressible. We further assume the pressure at the edge of the 

gap is zero. This is not accurate, but it gives an approximation 
R
P

x
P ∆
∂
∂ ~ , where P∆  is the 

largest pressure variation that is at the center of the circular air gap. Next, we expand the 

nonlinear continuity equation of the compressible Stokes flow: 
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We assume PPP ~
0 += , and apply the two conclusions we obtained from the two-circular-

plate example to the following scale analysis   
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First, the third term on the right-hand side of (8.7) is linearized based on the assumption 

0
~ PP << . If 1.0≤ε , and therefore the amplitude of the plate motion is much smaller than the 

air gap,  the second term on the right-hand side of (8.7) is much smaller than the first term and 

it may be neglected. Generally speaking, neglecting the second term is accurate when 

1    <<⇒<<⇒•∇>>
∂
∂

L
U ω

L
U uP

t
P

ω
r , where U is the maximum velocity, and L is the 

length over which the most significant pressure drop happens. We have 
2
ε

ω
≈

L
U  in the two 

plate example. 
L

U
ω

 is, therefore, equivalent to the nondimensional oscillation amplitude, and 

it can also be used as a nondimensional number to justify the validity of the above 

linearization.  

 

From the above analysis, we conclude that the linearization approach is accurate if the 

oscillation amplitude is small ( 1.0≤ε ) and the pressure variation is small ( 0
~ PP << ). Then 

the solution of the linearized compressible Stokes equations should be very close to the 

solution of the nonlinear compressible Stokes equations. 
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Equations (8.4) and (8.5) are linear equations that allow a PFFT-accelerated BEM approach. 

A major part of this chapter focuses on the derivations of the corresponding boundary integral 

equations. Before we start to discuss BEM, the next section compares equation (8.5) with the 

linearized compressible Reynolds equation.  

 

8.2 The compressible Reynolds equation 
 

   

 

Figure 8.2: A fluid lubrication problem 

 

The compressible Reynolds equation is derived from the isothermal compressible Navier-

Stokes equations with key assumptions that are applicable to thin fluid films. The basic 

equations used in deriving the compressible Reynolds equation are 
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The fluid is assumed to be a laminar Newtonian flow with constant viscosity. In addition, the 

above equations also assume: 

 

a. The Reynolds number is small. Hence, the acceleration term and convective 

term in the Navier-Stokes equation can be neglected. 

b .The second viscosity term is negligibly small. 

c. .0  ,0 =
∂
∂

=
z
Puz  

 

Next, the first two equations in (8.8) are integrated to give approximate velocity profiles and 

an integration of the continuity equation across the fluid film yields the compressible 

Reynolds equation for thin film with thickness h . Note that we have also assumed the top 

surface of the thin film is moving up and down and the bottom surface is fixed. 
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The above Reynolds equation can be further linearized to the linearized compressible 

Reynolds equation with oscillation frequency ω . The non-dimensional linearized 

compressible Reynolds equation is: 
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where σ  is the squeeze number. If applied to the air film between two parallel square plates, 

L  is the length of the plate. The linearized compressible Reynolds equation is a 

computationally friendly model. Analytical solutions have already been solved for thin films 

between parallel rectangular and circular plates [4]. Because of its simplicity, the linearized 

compressible Reynolds equation has been used extensively in modeling MEMS air squeeze 
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film effects. However, more and more researchers have started to question the accuracy of 

such an over-simplified approach. A significant shortcoming of this model is the neglect of 

the edge effect, since the equation is only applicable to fluid films. It has been found that the 

linearized Reynolds equation may be very inaccurate when the air film is not “thin” enough or 

the aspect ratio is small, where the aspect ratio of the thin film is defined as hL / . If the 

aspect ratio of the air film is between 5~20, a 20~75% or even larger error in damping force 

calculation should be expected [40].  

 

The inaccuracy of the linearized Reynolds equation is mostly due to neglecting 3-D effects. 

There are some modifications that help reduce errors, but such modifications are usually 

based on analytical formulas whose applications are also limited. A full 3-D fluid model like 

the linearized compressible Stokes equation is obviously a superior one.  

   

We only give a brief derivation of the linearized compressible Reynolds equation in this 

section so as to avoid listing too many details of this well-studied model. Because the 

derivation procedure is based on thin-film applications and many specific assumptions have 

been applied, it is very difficult to compare the performance of the linearized compressible 

Reynolds equation with that of the linearized compressible Stokes equation simply by 

examining the derivation procedures. We compare only the major assumptions in Table 8.1. 

Again, the linearized compressible Reynolds equation is only applicable to thin fluid films; 

but the linearized compressible Stokes equation is a true 3-D fluid model applicable to the 

entire fluid domain. The last assumption in Table 8.1 is clearly not good for general 3-D 

geometry; this strongly limits the application of the linearized compressible Reynolds 

equation. Comparisons of numerical simulation results will be given in the next chapter.  
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Table 8.1: The assumptions used by the two linearized fluid models 

Linearized Compressible Reynolds 

Equation 

Linearized Compressible Stokes 

Equation 

Low Reynolds number 

Isothermal 

Small motion amplitude 

Small pressure variation 

0=
∂
∂

t
urρ  

0,0 =
∂
∂

=
z
Puz   

 

 

8.3 The fundamental solutions of the compressible 
Stokes equation 
 
 
Solving the fundamental solutions or the Green’s functions is the first step in deriving 

boundary integral equations. The fundamental solutions represent responses of the fluid due 

to a point force perturbation at the source point. If we assume there is an oscillating point 

force ( )0x-xδeg ti rrr ω  at point 0xr , where fπω 2=  is the angular velocity of the oscillation, 

1−=i , and gr  is the strength of the point force, then velocity, pressure, and stress responses 

are also sinusoidal functions that can be expressed as titi
k Peeu ωω , , and ti

lke
ωσ , and the 

solutions of the corresponding velocity, pressure, and stress fields are: 
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Note that Puk  , , and lkσ are complex numbers because of the time derivative terms in the 

linearized compressible Stokes equation. ( ) ( ) ( )000 , and,,,, xxTxxpxxG ljkjkj
rrrrrr  are the 

fundamental solutions (Green’s functions, or BEM kernels). The stress of the compressible 

Navier-Stokes flow is defined as [20]: 
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where 0=κ . Substituting titi
k Peeu ωω , , and ti

lke
ωσ  into equation (8.4) and adding the point 

force term ( )0x-xδeg ti rrr ω  yields the system equations with the amplitudes as unknowns: 
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The unknowns are the Green’s functions we wish to solve. As mentioned before, solving the 

above equation is relatively easy if we do it in the Fourier domain and then transfer the 

solutions back to the 3-D space. The 3-D Fourier transformations of velocity, pressure, and 

two frequently used functions are  
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where kji 321 αααα ++=
r  is the frequency parameter, and jjaa α=2 . Substituting (8.14) into 

(8.13) gives the corresponding governing equations in the frequency domain, 

 

( )

( )

( )



















=+++

=+++++

=+++++

=+++++

0)~~~(~
2

1)~~~(
3
1~~)(

2

1)~~~(
3
1~~)(

2

1)~~~(
3
1~~)(

332211
0

3
2
3332211333

2
0

2
2
3332211221

2
0

1
2
3332211111

2
0

uauauaP
P

guauauaPiui

guauauaPiui

guauauaPiui

ω
π

µααµαωρ

π
µααµαωρ

π
µααµαωρ

  (8.15) 

 

Let us define: 
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and solve the velocity and pressure fundamental solutions in the frequency domain: 
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After taking an inverse Fourier transformation of (8.17), we obtain the fundamental solutions 

in the 3-D space: 
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       (8.18)  

 

The above fundamental solutions have two frequency parameters 1λ  and 2λ  in the 

exponential part, and one frequency coefficient 0C . The kernels are fast-decaying oscillating 

kernels; they are obviously very complicated. 
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8.4 Simplifying the fundamental solutions of the 
compressible Stokes equations 
 

Integrating complicated kernels is a difficult job, especially when both good accuracy and 

high speed are desired. The kernels in (8.18) are much more complicated than these 

frequently used 
r
1  and 

r
eikr

kernels, particularly the velocity kernel. Without talking about 

integrating, even calculating the value of the velocity kernel is difficult. Very often, part of 

the kernel, which is a large number, cancels with large numbers from other parts, and the 

cancellation leaves only a very small number badly contaminated by numerical errors. We 

discuss simplifying the linearized compressible Stokes kernels in this section. 

 

The linearized compressible Stokes model is a more general fluid model that takes both the 

compression effect and the transient effect into account. From another point of view, the 

simplified linearized compressible Stokes flow model, the unsteady incompressible Stokes 

flow model, and the steady incompressible Stokes flow model are just simplified versions of 

the linearized compressible Stokes flow model. This section shows how to derive these 

simple kernels directly by simplifying the kernels of the linearized compressible Stokes 

equations. 

 

8.4.1 The kernels of the simplified linearized compressible Stokes 
equations 
 

The simplified linearized compressible Stokes kernels are presented in this subsection. To 

compare the differences, we use the results in the previous section. Because 0ρ  only appears 

in the acceleration term of the momentum equation in (8.4), (8.4) becomes (8.5) if we 

mathematically assume 00 =ρ . Consequently, the two frequency parameters of the linearized 

compressible Stokes kernels are all zero:  
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Next, we substitute (8.19) into equation (8.17) and take an inverse Fourier transform to yield 

the fundamental solutions of the simplified linearized compressible Stokes equations: 
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A comparison between (8.20) and (8.18) reveals very dramatic simplifications; the kernels of 

the simplified linearized compressible Stokes equation are very similar to those of the steady 

incompressible Stokes equation, which are simple and easy to integrate. Clearly, the kernels 

are still frequency-dependent, but they are no longer fast-decaying oscillating kernels because 

all those exponential terms are gone.  

 

8.4.2 The kernels of the unsteady incompressible Stokes equations 
  

Once we remove the fluid compression effect from the linearized compressible Stokes 

equations (8.4), it becomes the unsteady incompressible Stokes equation (4.1). A 

mathematical simplification that makes the compressible flow (8.4) “incompressible” is to 

assume ∞→0P  so that the pressure variation becomes trivial when compared with ambient 

air pressure. Meanwhile, the density is kept unchanged. Accordingly, we have 01 =λ , and 
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2
2

0
1
λ

=C . Defining ν
ωλλ i== 2 , equation (8.18) is simplified to the fundamental solutions 

of the unsteady incompressible Stokes equations: 
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8.4.3 The kernels of the steady incompressible Stokes equations 
 

The steady incompressible Stokes equation only models quasi-static phenomena. Therefore, 

the kernels of the simplified linearized compressible Stokes equation can be simplified to the 

kernels of the steady incompressible Stokes equation by substituting 0=ω  into equation 

(8.20), and this leads to  
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8.5 The Lorentz reciprocal identity  
 

The boundary integral equation can be derived from the Lorentz reciprocal identity, which is 

also called the Green’s second identity applied to the Stokes flow problem. Before using it, 

we first derive the Lorentz reciprocal identity and prove that it can be applied to the linearized 

compressible Stokes flow. 

 

The reciprocal identity is a powerful tool for understanding the solutions of the Stokes flow. 

Its format is simple and suitable for generating boundary integral equations. The most 
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important aspect is that it offers information about an unknown flow based on solutions of a 

known flow. We assume there are two flows bounded by the same boundary, flow A and flow 

B. To be more precise, A and B are just solutions of the same fluid domain due to different 

boundary conditions. B is the known solution and A is the unknown solution we wish to 

solve. It is also assumed that external forces are only applied to the boundaries and not to the 

interior fluid domain. Let us define ' and uu  to be the velocities of flows A and B, 

respectively, and ' and σσ  to be the stresses of flows A and B, respectively. In addition, the 

oscillation frequencies of the external forces that perturb the motions of the fluid are also 

assumed to be the same. The Lorentz reciprocal identity states: 
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which can be used in combination with the divergence theorem to generate boundary integral 

formulas. To prove this, we first rewrite the following equation 

 

( ) ( )

( )
j

k

k

j

j

k
kjkjk

j

j

k

k

j

j

k
kjllkjk

jj

k
kjkjk

jj

kj
k

x
u

x
u

x
u

P
PiPu

x

x
u

x
u

x
u

uPu
xx

u
u

xx
u

∂
∂























∂

∂
+

∂
∂

+







+−−

∂
∂

=

∂
∂























∂

∂
+

∂
∂

+





 ∇−−−

∂
∂

=
∂
∂

−
∂
∂

=
∂

∂

'

0

'

'
'

'
''

3
2

3
2

µδµωσ

µδµσσσ
σ

 

(8.24) 

 

and apply the continuity equation to replace the divergence of velocity with a pressure term: 
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Interchanging the roles of the two flows in the above equation leads to another equation 
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Then, subtracting (8.25) from (8.24), and applying the assumption that there is no force inside 

the fluid domain, we get the final form of the Lorentz reciprocal identity: 
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Note that the reciprocal identity (8.23) is applicable only to the fluid domain with no external 

force inside.  

 

Since the above derivation procedure already uses the stress tensor of the compressible Stokes 

flow, we conclude that the reciprocal identity is also applicable to the compressible Stokes 

flow. 

 

8.6 The rigid body motions 
 

We proved the double-layer jump identity in (4.9) in this section. This identity leads to some 

useful results about the rigid body motions, which we will need when deriving the single-

layer integral equations. 

 

First, rewrite the momentum equation in (8.3) using the stress tensor 

 

( )00 x-xδgσui jjkkj
rr

+∇=ωρ      (8.28) 

 

Substituting the fundamental solutions into (8.28), the left-hand side and right-hand side of 

(8.28) become  
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Substituting (8.29) into (8.28) and rearranging the equations, we have  
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Next, we integrate the second equation in (8.30) over the closed surface defined by the 

boundary of a rigid body and apply the divergence theorem: 
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Then, we rearrange the above equation to yield: 

 

( )∫∫∫ ∫∫∫∫∫ +−= dvGidvx-xδδdsnT jljlkjkl µ
ωρπ 18 00

rr    (8.32) 

 

The first volume integration on the right-hand side represents the effect of the point force 

distribution; the second term represents the effect due to the fluid inertia inside the boundary 

of the rigid body. But actually, there is no fluid inside the boundary of the rigid body. What is 

there is the mass of the rigid body that will be considered when analyzing the dynamic 

performance of the whole system. It is only for the simplicity of our derivation that we 

assume the fluid to be everywhere in the entire domain, including the volume occupied by the 

rigid body. Hence, it is not bad to simply assume the fluid inside the rigid body boundary to 

have zero density, since it does not really affect the motion of fluid outside the boundary 
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when the motion is “rigid.” (The fluid inside the rigid body boundary moves like a rigid body; 

fluid motion is almost zero.) Another way to look at it is that the squeeze film effect we are 

studying is caused by the relative motion of the nearby surfaces, such as two plates 

approaching each other. We can imagine that the two plates have very thin rigid metal shells 

on the boundary with the interior filled with fluid, then it is easy to understand that the inside 

fluid affects almost nothing. In addition, if the above identity (8.32) is applied to the 

simplified linearized Stokes equation, this second term in (8.32) is exactly zero since the first 

term on the left-hand side of (8.28) is neglected. Thus we achieve a simplified identity that 

states: 
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Where nr  is the outward normal. Note that the meaning of “inside” means “inside the 

boundary of the rigid body”, which never happens if we deal with exterior problems only. 

“Outside” case is zero means that the contribution of this point force to the stress integration 

in (8.33) is zero, if the motion is perturbed by a point force outside the boundary. From the 

physical point of view, (8.33) describes force balance, where the left-hand side is the fluid 

force on the boundary, and the right-hand side is the external point force applied to the rigid 

body. If we add a constant velocity term to the integral of (8.33)  
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This implies that the double-layer integral due to a translating motion of the rigid object is 

zero if 0xr  is outside the boundary. Similarly, the double-layer integral due to the rotational 

motion of a rigid body is also zero if 0xr  is outside the boundary. Thus we reach a conclusion 

that the double-layer integral makes zero contribution when the evaluation point is outside, if 

the fluid motion is perturbed solely by the rigid body motions.  
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8.7 The integral equations of the linearized 
compressible Stokes equation 
 

Now let us derive the boundary integral equation using the identities (8.23) and (8.33). It is 

assumed that flow B is the fundamental solution due to point force  ( )0x-xδeg ti rrr ω  at point 0xr . 

The amplitudes of velocity and stress are: 
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Substituting (8.35) into the reciprocal identity (8.23), we have 
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Figure 8.3: Fluid domain with a boundary D defined by the surface of a rigid body 

 



 
 
 

116

Next we integrate (8.36) over the volume bounded by the boundary of D shown in Figure 8.3. 

Since the point force of flow B is only outside D, the reciprocal identity can be applied to the 

fluid inside D. Integration of (8.36) leads to: 
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then let jkj
in

k nf σ=  be the external surface forces applied to the interior fluid only, and apply 

(8.33). Note that the point 0xr  is outside the boundary of the rigid body.  
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Surprisingly, the integral is zero. This is because we have applied (8.33), which is based on 

the assumption that the double-layer integral of the internal fluid makes vanishing 

contributions to points outside the rigid surface. As a result, we get the following relationship 

from (8.38), 

 

0=in
kf       (8.39) 

 

which is true if we assume the internal fluid density is zero. In other words, the rigid body 

motions of the boundary can move the internal fluid with zero forces because the internal 

fluid density is zero. Consequently, the contribution of the internal fluid inertia force to the 

outside point is zero.  

 

Second, we investigate the fluid outside the rigid boundary D, extending all the way to 

infinity. As proved in the previous chapters, the surface integrals at infinity are zero. Hence 

we can simply neglect them. But the point force is inside this fluid domain and it makes the 

reciprocal identity (8.23) invalid. This point force, therefore, has to be excluded from the fluid 
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domain. In order to do so, we draw a small sphere with radius ε  to exclude this point force 

(see Figure 8.3). Then the fluid domain is εsphereDInfinity −−=Ω . The volume integration 

in the following equation is converted to surface integration using the divergence theorem:  
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Both kjσ  and ku  are solutions of flow A, which is a constant in the sphere if ε  is small 

enough: 
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(8.40) is then rewritten as: 
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Let jkj
out

k nf σ= be the external surface forces applied to the rigid body surface, and we 

subtract (8.37) from (8.42) to remove the double-layer integral. In addition, we assume 
in

k
out

kk fff −= : 
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(8.43) is the single-layer integral equation we are looking for. Another way to prove (8.43) is 

simply to apply (8.33) to (8.42) and note that the point 0xr  is again outside the fluid domain 

εsphereD outside −=Ω , making the second integral zero. Then we add 0=in
kf  to yield the 

final form (8.43). 

 

Equation (8.43) is derived by assuming the evaluation point is outside the boundary D; the 

same concept is also applicable to the inside of the fluid and the boundary. For an “interior” 

problem bounded by boundary D with 0xr  inside the boundary, the fluid domain is 

εsphereD −=Ω . We further apply (8.33) to simplify the second integral: 
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The above equation (8.44) states that external forces applied to the interior fluid exist only 

when there are relative motions inside.  D
lu  is the velocity of the translating motion of the 

rigid boundary. 

 

To derive the integral equation when the point force of flow B is right on the boundary, 

imagine that the tiny sphere is split into two halves, so an equation similar to (8.42) is 
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Then assuming 0xr  is right on the boundary and applying (8.33) to (8.45) to simplify the 

second integral: 
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Since most of the simulation problems we are facing are exterior problems, we only care 

about the boundary and exteriors. We will stay with the single-layer integral equation (8.43) 

from now on.  

 

Equation (8.43) implies that the double-layer integral, whose physical meaning is the velocity 

due to surface stress distribution, makes vanishing contributions when the boundaries move 

like rigid bodies. Similar derivations are also extendable to the pressure integral equation, and 

the single-layer pressure integral equation is: 
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π
    (8.47) 

 

Both (8.43) and (8.47) are also applicable to the simplified linearized compressible Stokes 

problems. 
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8.7 Kernel integrations 
 

Kernel integration is an important part of the BEM. If the kernel integration is not accurate, or 

numerically unstable, there is little hope that the final solution can be accurate. Of course, 

accuracy depends on not only the kernel integration algorithms but also the nature of the 

kernels. We discuss integrating the linearized compressible Stokes kernels in this section.  

 

a. Integrating the jkG  kernel 

The jkG  kernel is a fast-decaying oscillating kernel. The panel size should, therefore, be 

much smaller than the wave length of the kernel; this is usually satisfied at the discretization 

step. When the evaluation point is right on the panel, the semi-analytical method discussed in 

Section 3.2 can be applied. This method is accurate because the evaluation point is the 

centroid of the panel.  
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When the evaluation point is not on the panel, a serial expansion is applied: 
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Next we define: 
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The analytical flat panel kernel integration algorithm is applied to the terms in the curly 

braces, those terms are the weakly singular part; the remaining part ijG  is a smoother function 

that can be integrated using a high-order cubature formula. Since the kernel is a fast-decaying 

oscillating kernel, we use this approach to avoid large numerical errors when evaluation 

points are close to the panel. If the evaluation point is very far from the panel, a cubature 

method may be applied to directly integrate the jkG  kernel.  

 

b. Integrating the pressure kernel 

 

A similar combined approach is applied to the pressure kernel, which is  
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However, two important issues must be taken care of. The first is the so-called double-layer 

jump described in (6.5). A special procedure is added to the kernel integration algorithm to 
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adjust the layer jump so that the pressure is continuous when the evaluation point approaches 

the boundary from the exterior. 

 

The second issue is the difficulty associated with the semi-analytical approach when the 

evaluation point is right on the panel. Since analytical formulas have not been found for 

∫
−

dR
R

e R1λ

, we divide the kernel into two parts and apply different methods. The first part is a 

smooth function without singularity; it is integrated using a cubature method: 
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The remaining part is integrated using the semi-analytical method: 
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Note that, because of anti-symmetry, 
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if the evaluation point is right on the panel but not on the edges.  

 

The unsteady incompressible Stokes kernels can be integrated using techniques similar to 

those we discussed above. Integrations of the simplified linearized compressible Stokes 

kernels are calculated using the analytical flat panel integration algorithm, since the kernels 

are much simpler.  

 

8.8 The numerical robustness of the simplified 
linearized compressible Stokes integral equation 
 

The complicated fast-decaying oscillating kernels of the linearized compressible Stokes 

equation have caused many numerical difficulties. However, the worst thing about these 

kernels is not the difficulties in kernel integration, but rather the performances related to the 

oscillating nature of the kernels. In Figure 8.4 we plot the absolute values of the real and 

imaginary parts of the six independent velocity kernels. The horizontal coordinate is the 

distance between the evaluation point and the source point. The oscillation frequency is 

assumed to be 1 MHz, and the corresponding frequency parameters are: 

 

i

i
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41
1

104792.4104792.4

101418.2106323.1
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λ

λ
     (8.55) 

In order to achieve good global accuracy, the size of the panel should be less than 
20
1~

10
1  of 

the shortest wave length, that is, mµ
λ
π 14~

)Im(
2

2

. If the oscillation frequency is higher and 

the size of the panel is picked as mµ2.0 , it takes more than 20,000 quadrilateral panels to 

discretize a mmm µµµ 12020 ××  plate. The wave length calculation result is reflected by the 

real parts of the kernels plotted in Figure 8.4. It is clear that there is a sign change, pointed by 

the right arrow, when the distance between the evaluation point and the source point is about 

mµ2 .  
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However, the left arrow points to another sign change that indicates the shortest wave length 

to be shorter than nm 1 . What happens is that the kernel is so complicated that parts of it 

cancel with other parts in the same kernel, and this causes the sign changes of some imaginary 

parts at a shorter distance.  

 

Clearly, this bad performance severely limits the applications of the linearized compressible 

Stokes kernels, and makes them useful only for simulating nanometer-scaled devices. We 

have tried to calculate using those complicated kernels but were only able to get sound results 

when simulating devices with feature sizes on the order of nm1 . But the good news is that the 

simplified linearized compressible Stokes kernels are not oscillating kernels. Hence, they are 

not limited by the wave length, and we can expect good results using the simplified linearized 

compressible Stokes integral equations.   

 

 

Figure 8.4: The absolute values of the real and imaginary parts of the linearized compressible 
Stokes velocity kernels 
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Figure 8.5 shows the absolute values of the unsteady incompressible Stokes velocity kernels, 

which are also fast-decaying oscillating kernels. The oscillations of the imaginary parts at 

short distances are suspicious, but the values are too low to cause bad effects. It is possible 

that the oscillations are caused by the numerical errors we frequently encounter. Generally 

speaking, the performances of the unsteady incompressible Stokes velocity kernels are much 

better, although, the panel size is still limited by the shortest wave length.   

 

 

Figure 8.5: The absolute values of the real and imaginary parts of the unsteady incompressible 
Stokes velocity kernels 

 

8.9 The null space issue of the linearized compressible 
Stokes BEM operators  
 
Fortunately, the linearized compressible Stokes BEM operators are full-rank. The following 

are the linearized compressible Stokes equations: 
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The pressure oscillation amplitude already appears in the continuity equation, so it is not 

necessary to add extra boundary conditions since the solution is uniquely defined. The null 

space issue only arises when (8.56) is used to calculated quasi-steady cases (frequency equals 

to zero). Then the above equation is reduced to the steady incompressible Stokes equation.  

 

The linearized compressible Stokes equation describes the behavior of a compressible flow at 

a certain ambient air pressure due to perturbations. It is different from the incompressible 

Stokes equation in which constant pressure can be added to the pressure term as desired. In 

the compressible case, a constant pressure may be added to the total pressure in the third 

equation of (8.56), but this changes the ambient air pressure 0P  in the second equation. Once 

the equation is given, such addition is not allowed and no pressure boundary condition is 

needed. Therefore the oscillation amplitude of the pressure is uniquely defined by the system 

equation (8.56), if the given velocity boundary condition is proper.  

 

8.10 Fluid compression due to geometry  
 

Significant air compression at low speed is often due to confined geometry, as with a piston in 

a cylinder with small orifices (see Figure 8.6). If the orifices are small, part of the air is 

trapped inside when the piston moves rapidly. Now, consider removing the second viscosity 

term in the simplified momentum equation using the linearized continuity equation: 
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Figure 8.6: Air compression due to confined geometry   

 

Accordingly, the pressure losses across narrow pipes can be expressed as: 
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where L is the length of the pipe, ux is the velocity along the pipe, 
0

1 3
1

P
iC ωµ

+= , and z is the 

dimension of the cross-section. The pressure drop can be estimated as 2
010

~
zP

Lu
CP

P xµ∆ . In the 

two circular plates example shown in Figure (8.1), we have επfRu x = , 1~1C , hz = , and 

RL = . The relative pressure drop 
0P
P∆  due to nondimensional oscillation amplitude ε  is the 

best indication of the strength of the compression effect: 
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Clearly, the coefficient 
0

2

2

Ph
fRµπ  is equivalent to the squeeze number 2

0

224
hP
fRπµ . Therefore, 

we should use the nondimensional number 2
010

~
zP

Lu
CP

P xµ∆  or the squeeze number to check the 

strength of the compression effect generated by the oscillating motions. 



 
 
 

129

Chapter 9 
 
The compressible FastStokes solver and 
numerical simulation results 
 

The compressible FastStokes solver solves the linearized compressible Stokes equation and 

the simplified linearized compressible Stokes equation using the PFFT-accelerated BEM 

approach. A major numerical difference between the compressible FastStokes and the 

incompressible FastStokes is the complex number operations. The compressible FastStokes 

uses complex numbers because of the ωi  terms in (8.57). As a result, both the computational 

cost and the memory requirement of the compressible FastStokes increase.  

 

When solving the simplified linearized compressible Stokes equation, the compressible 

FastStokes solver is reasonably fast and numerically stable. Also, the discretization is not 

limited by wave lengths; this avoids quite a lot of trouble. Most numerical results presented in 

this chapter are simulated using the simplified linearized compressible Stokes model. 

 

In addition to showing the effectiveness of the FastStokes simulation program, we will also 

discuss calibrating air compression effect in micromachined devices and show the 

approximate validity ranges of the incompressible assumption in air-packaged MEMS 

devices. Such calibration has been unavailable in the literature because of the lack of 

computationally friendly 3-D fluid models and fast simulation approaches.   

 

9.1 A thin air film between two square parallel plates 
 

Let us consider two square parallel plates: the top plate oscillates up and down and the bottom 

plate is fixed. The sizes of the two plates are mmm µµµ 11010 ××  with an air gap of  mµ1  in 

between. The device is assumed to be packaged at room temperature and oscillates at 10 
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MHz. Some important parameters are: ,kg/m 177.1 pa, 10013.1 35
0 =×= ρP  and 

2-5 s/mN 101.843 ⋅×=µ . In the following pictures we show the FastStokes-simulated damping 

forces and spring forces on the bottom side of the top plate using the simplified linearized 

compressible Stokes model. It is clear that the simplified linearized compressible Stokes 

model captures the weak fluid compression effect. If the steady incompressible Stokes model 

is used, the spring force solution is zero and the damping force solution is not accurate.  

 

 

Figure 9.1: The damping force 
distribution on the bottom side of the top 

plate 

 

Figure 9.2: The spring force distribution on 
the bottom side of the top plate 

 

 

9.2 Modeling the air compression effect in squeeze film 
 
 
It has been reported that the air compression in squeeze film structures causes significant 

spring forces, which might shift the resonance frequencies substantially. The questions are, 

how to accurately model the damping forces and spring forces, and when to use a 

compressible model or an incompressible model? These are tough questions that have not 

been answered. The reason has been the lack of fast and accurate 3-D fluid solvers. 

 



 
 
 

131

In this section we compare the numerical solutions of the incompressible FastStokes solver 

and the compressible FastStokes solver (which solves the simplified linearized compressible 

Stokes equation) with the analytical solutions of the linearized compressible Reynolds 

equation in the square-plate case. Again, we assume that these two square plates are packaged 

in air at 1atm, room temperature, and that the bottom plate is fixed and the top plate oscillates 

up and down. The oscillation frequency and aspect ratio are varied to change the strength of 

the compression effect. It is assumed that the air gap and the thickness of the plates are both 

mµ1h =  and the length of the square plate L  is varied to change the aspect ratio 
h
L . A non-

dimensional number called squeeze number, defined as ( )2

0

 24 RatioAspect
P

fπµ  in the two 

square plate case, is commonly used to indicate the strength of the squeeze film effect, where 

f  is the oscillation frequency. A larger squeeze number indicates a stronger squeeze film 

effect, and thus a larger spring force. The following two figures show the non-dimensional 

force on the top plate, which is defined as 
'0εAP

Fh , where F  is the force, 2LA = is the area of 

the thin air film, and 
h
'εε =  is the non-dimensional oscillation amplitude.   

 

 

Figure 9.3: The non-dimensional total 
damping forces on the top plate 

 

Figure 9.4: The non-dimensional total spring 
forces on the top plate 
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The “Compressible Stokes” in the above figures means the simplified linearized compressible 

Stokes equations; the “Compressible Reynolds” means the linearized compressible Reynolds 

equation. Note that the analytical Reynolds equation solution neglected the edge effect (or the 

entrance effect), which make it accurate only when the aspect ratio is extremely large. Some 

researchers have added adjustments to the analytical Reynolds equation solution to 

compensate for the edge effect, and they found that the original analytical solutions are very 

inaccurate. The original analytical solution predicts about 65% less damping force when 

aspect ratio = 5, 25% less when aspect ratio = 20, and 10% less when aspect ratio = 100. In 

addition to the neglected edge effect, the Reynolds equation solution also neglects other 3-D 

effects, such as the force on the top surface of the top plate.  

 

In Figure 9.3 and Figure 9.4, it is easy to see that the damping forces and the spring forces 

predicted by the simplified linearized compressible Stokes equation are more meaningful. 

When the aspect ratio gets larger, both damping force solutions and spring force solutions 

converge to the solutions of the linearized compressible Reynolds equation.  

 

In addition to the above solutions, the damping force solutions of the steady incompressible 

Stokes equation (labeled as “incompressible Stokes”) are added to Figure 9.5. When the fluid 

compression effect is small, say squeeze number < 5, the solutions of the steady 

incompressible Stokes equation and those of the simplified linearized compressible Stokes 

equation match very well. This indicates that the incompressible fluid model is good enough 

for the damping force calculation. However, when the squeeze film effect is stronger, say, 

squeeze number > 10, a compressible fluid model is a must if an accurate damping force 

solution is desired. Again, the solution of the linearized compressible Reynolds equation is 

not accurate unless the aspect ratio is large. 

 

Many researchers have a wrong impression that only compressible fluid models give good 

solutions when modeling squeeze film damping. The results we get here clearly indicate that 

if only the damping force is desired, an incompressible fluid model is capable of producing a 

good result when the squeeze film effect is not too strong.  
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In addition, the above simulation results show that the compressible FastStokes solver is a 

much more powerful tool for exploring the fluid damping and spring effects in MEMS. 

Whenever the fluid compression effect is not clear, it is suggested that the compressible 

FastStokes solver be used.  

 

 
 

Figure 9.5: The non-dimensional total damping forces of the three fluid models 

 

 

9.3 The spring forces 
 

To further understand the importance of accurate spring force simulations and the 

applications of the compressible FastStokes solver, this section discusses resonance frequency 

shifts due to the spring forces generated by air compression. Such frequency shift is one 

critical aspect in design and it must be considered.  
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Again, we use the two square plate example used in the previous section (see Figure 9.6). The 

top plate is assumed to be attached to the substrate by tethers, and the resonance frequency is 

calculated as 
m
Kf

π2
1

0 =  before air compression is considered, where K  is the stiffness of 

the tethers. We also assume the top plate oscillates at the frequency 0f  and that the device is 

packaged in air. Then the spring force of the squeeze film contributes a film squeezeK  that shifts 

the actual resonance frequency. The comparison of film squeezeK  and K  gives a good 

understanding of the effects of fluid compression. Again, the horizontal coordinate of Figure 

9.7 is the squeeze number at the designed resonance frequency (without air spring force). The 

designed resonance frequency of the device is varied by changing the stiffness of the tethers.  

 

 

 

 
 

Figure 9.6: The two parallel square plates  

 

Figure 9.7: The stiffness shift due to spring 
forces 

 

The result shown in Figure 9.7 reflects what people have observed experimentally: the 

stiffness might be shifted by orders of magnitude due to the spring forces generated by air 

compression, especially when the aspect ratio is large. An even more interesting conclusion 

drawn from Figure 9.7 is that the stiffness shifts converge when resonance frequency 

approaches zero. This can be explained by the following equations: 
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  (9.1) 

 

The last equation in (9.1) is the analytical spring force solution of the linearized compressible 

Reynolds equation, which shows that 2
0film squeeze

2
film squeeze  and fKK ∝∝σ  when the squeeze 

number is small. Since the stiffness of the tether is also proportional to the square of the 

oscillation frequency, i.e. 2
0fK ∝ , Therefore, when resonance frequency is low, changing the 

stiffness of the tether does not change the relative resonance frequency shift.   

 

Of course, all conclusions above are drawn from the simple two-square-plate example. If 

more conclusions are needed for general complicated geometries, the compressible 

FastStokes solver is the best solution to difficult 3-D simulation problems.    

 

9.4 More complicated examples 
 

In this section we study the damping and spring forces on irregular structures using the 

compressible FastStokes solver. An etch hole example and a high-aspect-ratio comb-drive 

example are given. 

 

9.4.1 Etch holes on a large proof mass 
 

Etch holes are frequently used to help the etchant reach underneath the structural layers, so 

that the sacrificial layers can be quickly removed and the structural layers can be released. If 

the etchant also attacks useful structures, carefully designed etch holes can reduce the length 

of the etching period and lower the side effects. Figure 7.12 shows arrays of etch holes on the 

proof mass of ADXL76. Clearly, the existence of etch holes affects the damping performance 
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of the structures. In this example we consider two devices: the first device is our favorite two-

parallel-plate oscillator; the second device is similar but with a square etch hole on the top 

plate. We assume all plates are mmm µµµ 12020 ×× , and the air gap is mµ1 . The top plates 

are assumed to be oscillating at 2 MHz, with a velocity amplitude 0.1 m/s. The squeeze 

number of the two-parallel-plate oscillator is 11, which means the compression effect is 

reasonably strong. Therefore, we use the simplified linearized compressible Stokes flow 

model. Figures 9.8 and 9.9 show the damping force distribution on the bottom side of the top 

plate. We use the same scale in both figures, so that the force reduction in the etch hole case is 

clearly seen.   

 

 

Figure 9.8: The damping force on the 
bottom side of the top plate 

 

Figure 9.9: The damping force on the bottom 
side of the top plate, with a square etch hole 

at the center 

 

Table 9.1 lists damping forces and spring forces on the top plates of both devices. For the 

second device, we calculated two cases: one in which the size of the etch hole is m 2m 2 µµ ×  

and one in which the size of the etch hole is m 4m 4 µµ × .  
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Table 9.1: Damping and spring force reductions due to the existence of an etch hole 

Etch Hole Forces Plate only With etch hole Area reduction Forces reduction

Damping 127 nN 106 nN 17% m 2 µ  

Spring 46 nN 30 nN 

1 % 

35% 

Damping 127 nN 77 nN 39% m 4 µ  

Spring 46 nN 15 nN 

4 % 

68% 

 

It is clear that the etch holes substantially reduce the damping and spring forces. A 

m 2m 2 µµ ×  etch hole reduces the area of the top plate by only 1%, but the damping force is 

reduced by 17%; and the spring force is reduced even more significantly, by 35%. The 

m 4m 4 µµ ×  etch hole reduces the damping force by 39%, and it reduces the spring force by 

68%. 

 

9.4.2 High aspect-ratio comb-drives 
 

The recent development in bulk-micromachining technologies makes fabricating thick 

structures, such as high aspect-ratio comb-drive structures, easier. It is almost certain that the 

lateral motion of the thin-film structure does not cause significant air compression, but the 

same conclusion may not apply to thick structures. In this example we study a structure with a 

3-finger static comb-drive and a 2-finger movable comb-drive (see Figure 9.10). The lengths 

of the fingers are 40um, with an overlap of 20 um; the air gap in the overlap area is 3 um; the 

thickness of the comb is 20 um. The movable comb is assumed to oscillate at 5MHz in both x 

and y directions, with an oscillation amplitude of 0.1 um.  
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Figure 9.10: The thick comb-drive 
structure and y-direction force 

distribution when the movable comb 
oscillates in y-direction 

 

 
 

Figure 9.11: The damping force on the 
movable comb when it oscillates in y-

direction 

 

Both Figure 9.10 and Figure 9.11 show the y-direction damping distributions. Table 9.2 lists 

forces in the motion directions when the movable comb oscillates in x and y directions.  

 

Table 9.2: Damping and spring forces on the movable comb-drive 

Motion direction Frequency Squeeze Number Forces in motion direction 

Damping 1092.2 nN Y 5 MHz 2.7 

Spring 99.7 nN 

Damping 78.2 nN X 5 MHz  

Spring 0.64 nN 

 

The y-direction motion is strongly affected by the squeeze film effect. However, because the 

aspect ratio of the overlapped area is only 6.6~3/20 , and also because the oscillation 

frequency is not very high, the squeeze film effect is not strong enough to generate large 

spring forces. If the resonance frequency of the y-direction motion in vacuum is assumed to 

be 5 MHz, the spring force shifts the resonance frequency of the y-direction motion by only 
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0.0028%; the quality factor in this case is 1621. Table 9.2 also shows the x-direction motion 

is very lightly damped, because there is little squeeze film effect.   
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Chapter 10 
 
Conclusions 
 

 

This thesis describes our most recent achievements in developing FastStokes 3.0, a fast 

Stokes flow simulation program based on the pre-corrected FFT accelerated boundary 

element method.  

 

The FastStokes simulation program is designed to perform fast full 3-D fluid simulations on 

geometrically complicated MEMS devices packaged in gases at ambient air pressure or in 

liquids. Existing 3-D Navier-Stokes equation solvers using FEM or FDM have been found to 

be inadequate; they may take days to run to completion or fail when geometries get 

complicated. Both an incompressible FastStokes solver that solves the steady incompressible 

Stokes equation and a compressible FastStokes solver that solves the simplified linearized 

compressible Stokes equation are developed.  

 

We have chosen to use the boundary element method because it needs only the boundary 

discretization, which is a significant reduction of discretization complexity compared with the 

volume discretization used in FEM or FDM. A standard piece-wise centroid collocation 

approach is applied in FastStokes (see Chapter 2). The implementation of the PFFT algorithm 

in combination with the GMRES algorithm dramatically reduces the computational cost to 

O(nlog(n)). As a result, FastStokes is fast and memory-efficient.    

 

The singular BEM operator problem of the incompressible Stokes integral equations is 

difficult and has not been fully addressed in the literature. Since the governing equations do 

not have a unique solution without a pressure boundary condition, the incompressible Stokes 

integral operators are singular with null space vectors defined by the surface normals of the 

objects. If the null space of the singular BEM operators is ignored or not treated carefully, 
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numerical errors and solution discontinuities are unavoidable in some cases. The two-step 

approach presented in Chapter 6 successfully solves this problem. In the first step, a null-

space-removing procedure is added to the GMRES algorithm to solve a null-space-free 

solution; this modification reduces numerical error and it also leads to a fast convergence. The 

second step is a pressure-pinning method that modifies the null-space-free solution to make 

the final solution unique and correct. This step removes the solution discontinuities across 

closed surfaces. The two-step method is easy to implement and makes the FastStokes program 

numerically robust. 

 

An analytical flat panel kernel integration algorithm is implemented in the FastStokes solver 

to improve the accuracy of the nearby interaction calculations. This analytical method was 

originally developed by Newman [19]; we added a second recurrence scheme to calculate 

contour integrations (Section 3.3 and Appendix). This algorithm is also fast because it 

integrates the six independent Stokes kernels simultaneously using recursive schemes. Based 

on this analytical algorithm, we further developed a curved panel integration algorithm using 

a mapping method. A curved panel is first mapped to a flat panel, and the non-singular part of 

the integration is approximated using polynomial. The approximated expression is then 

calculated using the analytical flat panel integration algorithm. An accurate mapping is the 

critical point of this method; we use the ideal reference flat panel defined in Chapter 5. This 

method has been tested and it is found to be very accurate. This curved panel integration 

algorithm may provide great accuracy benefits to BEM solvers using curved panels.  

    

The accuracy and the fast speed of the steady incompressible FastStokes solver have been 

proved by several numerical experiments. A sphere, a resonator, the ADXL76 accelerometer, 

and a micro-mirror have been simulated and the results are presented in Chapter 7. The 

simulations are usually finished in minutes on a PC computer, although very fine 

discretizations using more than 40K panels may take more than an hour’s time. We found 

close matches between numerical simulation results and the testing results; the differences are 

within engineering accuracy (5-10% differences). This simulation program is, therefore, 

qualified to be used to verify and optimize designs. The Couette flow model solution and the 
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1-D Stokes flow model solution are also compared with the FastStokes simulation result and 

the experimental result in the comb drive resonator case to show the inaccuracy of these 

simple fluid models (30~50% errors). Simple 1-D or 2-D fluid models can certainly give good 

estimates in special cases, but in general, they are not accurate enough for complicated 3-D 

geometries, particularly when the 3-D effect is significant.   

 

The linearized compressible Stokes model and the simplified linearized compressible Stokes 

model are derived to model the compression effect in air flows perturbed by the oscillating 

motions of MEMS devices. The linearized compressible Stokes model is a general fluid 

model that models both compression effect and transient effect. However, the simplified 

linearized compressible Stokes model, which neglects only a trivial term in the linearized 

compressible Stokes equation, is found easy to solve because its BEM kernels are 

significantly simpler (Section 8.4). A compressible FastStokes solver that solves the 

simplified linearized compressible Stokes equation using the PFFT-accelerated BEM is 

developed and tested. This solver is also fast, accurate, and numerically robust.  

 

The compressible FastStokes solver is a full 3-D solver that captures 3-D effects, which is 

important in the compressible flow case. Simulations of simple geometries using a 3-D finite-

element compressible Navier-Stokes equation solver has been reported but shown to be too 

slow for general 3-D geometries [30]. The frequently-used linearized compressible Reynolds 

equation has been found to be inaccurate because it neglects important 3-D effects such as the 

entrance effect. A comparison between the solutions of the compressible FastStokes solver 

and the analytical solutions of the linearized compressible Reynolds equation clearly shows 

the inaccuracy of the linearized compressible Reynolds equation (Section 9.2); other 

researchers have also reported such results [40]. 

 

We compare the solutions of the steady incompressible FastStokes solver with the solutions 

of the compressible FastStokes solver in Section 9.2. When the air compression effect is not 

strong, the damping force solution of the incompressible FastStokes solver is close to the 

solution of the compressible FastStokes solver, although the spring force solution is zero. 
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However, when the compression effect is strong, only the compressible FastStokes solver is 

capable of predicting both accurate damping forces and accurate spring forces.  

 

The fluid compression effect has attracted a significant amount of attention since a large 

spring force may shift the resonance frequency of the devices. The strength of the 

compression effect can be estimated using a non-dimensional number given in Section 8.10; 

this non-dimensional number is equivalent to the squeeze number in the squeeze film cases. 

When the strength of air compression is uncertain, we recommend using the compressible 

FastStokes solver that solves both the damping forces and spring forces although it is a little 

bit slower than the incompressible FastStokes solver. Several numerical examples are given in 

Chapter 9. Simulation results show large spring forces when the compression effect is strong. 

An etch hole example is given in Section 9.4.1; when the squeeze number is large, etching 

uniformly distributed holes on the structure may dramatically reduce damping and spring 

forces. A comb drive example is given in Section 9.4.2; as expected, the spring force is 

negligibly small since the squeeze number is small. 

 

The development of the FastStokes simulation program has made rapid full 3-D fluid analysis 

of geometrically complicated micro-machined devices possible, as proven by numerical 

simulation examples, in both incompressible and compressible cases. 
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Appendix   
 
An analytical flat-panel integration 
algorithm 
 

 

1. Set up a local coordinate system 
 

To simplify the calculations, a local Cartesian coordinate system (ξ,η,ζ) is set up and the 

panel is put in the ηξ − coordinate plane with the centroid at the origin. The transformation 

between the local coordinates (ξ,η,ζ) and the global coordinates (x,y,z) can be easily 

expressed as  
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where (X,Y,Z) are the local coordinates of the evaluation point and (X’,Y’,Z’) are the 

corresponding global coordinates. 
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2. Calculate the solutions of lower-order source and dipole 

distributions 
 

According to Newman [19], the Gauss-Bonnet theorem can be used to solve the potential at 

the evaluation point due to constant −4π  normal dipole distribution over the flat panel: 
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In the above equation, r is the distance between the evaluation point and the point on the 

panel; iR  is the distance between the evaluation point and the ith panel corner; iξ  and iη  are 

the local coordinates of the ith panel corner; iiiii ηηδηξξδξ −=−= ++ 1i1  ,  ; and ns  is the 

number of corners. Integrating  Φ  in the direction of panel normal direction yields Ψ , which 

is the potential due to π4−  source distribution. Furthermore, the potentials due to linear and 

bilinear source and dipole distributions can be obtained in a similar way. 
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 edge. ),( ii vu −  and ),( ii VU −  are real and imaginary 

parts of two 2-D vectors starting from the ith
 corner and the (i+1) th corner individually; both 

vectors end at the projection of the evaluation point on the ith edge. The real axis is along the 

line from the ith
 corner to the (i+1) th corner, and the imaginary axis is perpendicular to it.  

 

3. Calculate the solutions of higher-order potential distributions 
 

For higher-order potential distribution in the form of  
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three recurrence formulas were given by Newman [19]:  
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However, it is quite obvious that the integrals in the recurrence equations are not easy to 

solve. In this thesis, a second recurrence scheme is introduced to solve these integrals. 

 

First, Green's formula is used to simplify the surface integration to line integration. We 

define: 
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and then integrate in a counterclockwise direction along each edge of the panel. The integral 

( )nmy ,Ω  becomes: 
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where s  is a dummy variable along the panel edges; the projection of the evaluation point on 

the edge is chosen as the origin. Note that the minus sign comes from the integration 

direction, and the corners of the panel are numbered counterclockwise. iξ , X , iu , iθ , and so 

on are all constants once the evaluation point is fixed. The problem remaining is to solve a 

simpler integral: 
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Another recurrence scheme is introduced to solve Γ( , )i k  at very low computational cost: 
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The solution of ( )nmy ,Ω  is then expressed as 
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and ( )nmy ,Ω  is solved in a similar way. Then Newman's recurrence scheme is applied to 

compute the higher-order Φ 's and Ψ 's.  

 

4. Transfer local solutions back to the global coordinate system 
 

These solutions given by the recurrence equations are the local solutions that must be 

transferred back to the global system. Here we offer a general idea of how to transfer 

solutions back. If the orders of Φ 's and Ψ 's are very high, the transformation might take 

more CPU time than computations in the local system. It is suggested that big loops be broken 

up into smaller ones in order to save CPU time. Efficiently designed loops might save CPU 

time by a factor of 20.  
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The solutions in the local system and global system are: 
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Using the coordinate transformation equation A1, we have 
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Then, substituting the above equation into the global expression gives the final solution: 
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For the Stokes kernels, there is a simpler way to transfer the solution back to the global 

system. We first define: 
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The solutions in the global system, [ ] [ ]global
2

global
1  and ΦΦ , are defined in a similar way. We then 

apply the following equation to yield the final solution: 
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